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Resumo 

O cenário industrial atual aponta o aumento da competitividade industrial, da complexidade de 

máquinas e equipamentos, dos custos de instalações industriais, produtos de alta demanda acrescido 

da preocupação com os aspectos de segurança industrial e do meio ambiente. Tal tendência induz 

as grandes indústrias globais a cada vez mais investirem em dispositivos, tecnologias e ferramentas 

destinadas a predição de falhas decorrentes de não conformidades e avarias em máquinas, 

equipamentos e instalações industriais. Diante desse cenário, o campo de atuação que trata da 

manutenção preditiva, análise de previsão e diagnóstico de falhas ganhou um lugar de destaque, 

além de diversos investimentos em pesquisa e desenvolvimento, principalmente com políticas 

voltadas a concepção da indústria 4.0. Com a abordagem da indústria 4.0 é possibilitada a análise 

de componentes mecânicos em regime dinâmico e resposta em tempo real, ou seja, sem a 

necessidade de parar a máquina, o que está diretamente relacionado a diminuição dos custos e 

tempo de produção. Dito isso, a presente tese tem por objetivo apresentar uma nova metodologia na 

detecção e monitoramento de falhas tribológicas em motores a combustão interna, por meio da 

aprendizagem de máquinas por métodos não supervisionados e big data, utilizando técnicas de 

processamento de sinais, dos dados coletados de vibração e nível de pressão sonora do motor, 

utilizando algoritmos baseados em redes neurais artificiais (RNA) e análise de clusters, criando um 

sistema inteligente capaz de detectar padrões de falhas, a partir das condições de falhas e variação 

de carga mecânica em motores a combustão interna ciclo Otto. 

Palavras-chave: Tribologia, motores a combustão interna, Aprendizagem de máquina, Big data, Redes 

Neurais Artificiais, Diagnóstico de falhas 

 

Abstract 

 

The current industrial scenario points to an increase in industrial competitiveness, in the complexity 

of machinery and equipment, in the costs of industrial installations, in high demand products, in 
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addition to the concern with aspects of industrial safety and the environment. This trend induces 

large global industries to increasingly invest in devices, technologies and tools designed to predict 

failures resulting from non-conformities and breakdowns in machinery, equipment and industrial 

installations. Given this scenario, the field of action that deals with predictive maintenance, forecast 

analysis and failure diagnosis has gained a prominent place, in addition to several investments in 

research and development, mainly with policies aimed at the design of industry 4.0. With the 

industry 4.0 approach, it is possible to analyze mechanical components in a dynamic regime and 

respond in real time, that is, without the need to stop the machine, which is directly related to the 

reduction of costs and production time. That said, the present thesis aims to present a new 

methodology in the detection and monitoring of tribological failures in internal combustion 

engines, through machine learning by unsupervised methods and big data, using signal processing 

techniques, from the collected data engine vibration and sound pressure level, using algorithms 

based on artificial neural networks (RNA) and cluster analysis, creating an intelligent system 

capable of detecting fault patterns, based on fault conditions and mechanical load variation in 

motors internal combustion Otto cycle. 

 

Keywords: tribology, internal combustion engines, machine learning, big data, artificial neural networks, 

fail diagnosis   

 

1. Introdução 

 

Segundo A Mckinsey Global Institute [1], em até 2025, os processos relacionados à indústria 4.0 

poderão reduzir os custos de manutenção de equipamentos entre 10% e 40%, a redução do 

consumo de energia entre 10% e 20% e um aumento entre 10% e 25% da eficiência no trabalho. Ao 

se tratar dos custos envolvendo efeitos tribológicos em todos os setores estratégicos da sociedade 

moderna. Jost [2] relatam que cerca de 30% da energia no transporte é usado para vencer o atrito, 

enquanto na indústria a quantidade corresponde a cerca de 15 a 20%. Em áreas residenciais e 

outras, a energia usada para superar o atrito é inferior a 10%. Como conclusão geral o estudo 

demonstra que cerca de 20% da produção de energia no mundo é convertida em efeitos 

tribológicos. 

Investimentos em ensino, pesquisa e aplicação de conceitos de Tribologia contribuiria para a 

diminuição de custos e perdas nas indústrias, aumento do retorno sobre investimento e no aumento 

do produto interno bruto (PIB) [3]. O autor relata ainda que com os investimentos nessas áreas seria 

possível, em valores quantitativos, diminuir aproximadamente: £22 milhões em investimentos 

devido a maiores taxas de utilização e maior eficiência mecânica; £28 milhões na redução do 

consumo de energia por meio da redução do atrito; £100 milhões de investimentos para o 

acréscimo da vida útil de máquinas e equipamentos; £115 milhões em perdas devido a quebras; 

£230 milhões em custos em manutenção e reposição de peças; £10 milhões em recursos produtivos 

vinculados a força de trabalho; e £10 milhões com custos com lubrificantes. 

As Redes Neurais Artificiais (RNAs) são técnicas computacionais criadas a partir de modelos 

matemáticos inspirados na estrutura neural de organismos inteligentes e daqueles que adquirem 

conhecimento através da experiência. Uma grande rede neural artificial pode ter centenas de 

unidades de processamento, já o cérebro de um mamífero pode ter muitos bilhões de neurônios [4]. 

Uma Rede Neural Artificial é composta por várias unidades de processamento, os quais são 

conectados por canais de comunicação denominado pesos. Essas unidades realizam operações 

sobre os dados de entrada e seus determinados pesos, a fim de transformar esses dados ponderados 

em uma determinada resposta de saída. O comportamento inteligente de uma RNA vem de 

interações entre as unidades de processamento da rede [4]. O sinal de entrada ao entrar no neurônio, 

logo é multiplicado pelo peso sináptico onde ocorre uma junção de todas as entradas já ponderadas 
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em uma função denominada somatório. Após obter o valor proveniente da função somatório, é 

necessário definir a função de ativação. Um dado importante para definir a saída de uma RNA é a 

função de ativação. Geralmente, o estado de ativação dos neurônios se comporta como binário (0 e 

1), bipolar (-1 e 1) ou reais. 

Quanto à função de aprendizado, Kohonen [5] relata que estas funções servem para realizar a 

alteração dos valores dos pesos da rede, possibilitando o aprendizado de um determinado padrão. 

Aguiar e Oliveira [6] afirmam que o aprendizado de uma rede consiste no ajuste de seus parâmetros 

dado uma apresentação de conjuntos de padrões específicos. Os padrões de treinamento contêm as 

informações desejáveis para que uma rede aprenda. Os parâmetros a ajustar são os pesos das 

conexões que interligam os neurônios. Haykin [7] descreve alguns passos que devem ser seguidos 

para a adequada aplicação da abordagem neural, sendo os seguintes passos: Coleta de dados; 

Separação em subconjuntos; Configuração da rede; Treinamento; Teste. 

O Self-Organizing Map-SOM, também chamado de Mapa de Kohonen, é um tipo de Rede neural 

artificial treinada por aprendizagem competitiva não-supervisionada que se baseia em princípios de 

auto-organização de dados, que permite a representação de dados multidimensionais em Clusters 

[5]. O Mapa de Kohonen é baseado na aprendizagem competitiva, em que os neurônios da grade 

competem entre si no intuito de serem ativados ou disparados, resultando em apenas um neurônio 

de saída, ou um neurônio por grupo. O neurônio de saída vencedor da competição é chamado 

neurônio leva tudo ou neurônio vencedor. O self-Organizing Map é caracterizado pela criação de 

um mapa topográfico dos padrões de entrada, no qual os neurônios da grade são indicativos das 

características estatísticas dos padrões de entrada. As redes SOM têm a capacidade de transformar 

um sinal de entrada de dimensão randômica em um mapa discreto uni ou bidimensional, realizando 

transformações de forma topologicamente organizada [7].  

Castro [8] elucida que, na aprendizagem competitiva, os neurônios da camada de saída competem 

pelo direito de permanecerem ativos para um determinado estimula de entrada. Com isso ao final, 

apenas uma unidade permanecerá ativa para aquele determinado dado de entrada. 

O mapa auto-organizável de Kohonen é uma ferramenta amplamente utilizada em diversas 

aplicações da ciência como para modelos e métodos paramétricos de estimação no controle da 

vibração de um piezoelétrico flexível pneumático com controle proporcional derivativo, obtendo 

vários modelos lineares locais, quando a dinâmica do sistema pneumático demanda uma alta não-

linearidade [9]. Utilizada no diagnóstico de falhas em motores de indução, por meio da observância 

e classificação das principais falhas mecânicas e elétricas ocorridas durante o funcionamento do 

sistema, utilizando métodos de análise de dados acústicos, baseados na transformada Wavelet e 

análise de correlação, em sinergia com o Mapa Auto-Organizável de Kohonen para classificação 

dos tipos de falhas [10].  

O mapa auto-organizável (SOM) de Kohonen também se mostra uma ferramenta usual no 

monitoramento do desgaste. Yen et al. [11] utilizaram a SOM para o monitoramento do desgaste de 

ferramentas baseadas em sinais de emissão relacionada a um processo de micro-fresagem, aliando 

técnicas de processamento de sinais direcionados a Transformada Rápida de Fourier com a 

utilização de uma rede Learning Vector Quantification (LVQ) na avlaiação dos efeitos do algoritmo 

SOM no desempenho de classificação para o monitoramento do desgaste da ferramenta. 

No trabalho de Huang et al. [12] foi trabalhado a abordagem do Mapa Auto-Organizável (SOM), 

juntamente com a rede Backpropagation, para a previsão de vida residual de rolamentos de esfera 

utilizando o sinal de vibração no domínio tempo e ,com uso do detector envelope para entrada do 

sinal, no domínio frequência, posteriormente a normalização dos sinais alimentaram a rede neural 

SOM. Com a saída dos vetores da SOM, foi utilizado o indicador Minimum Quantisation Error 

(MQE) para posterior interpolação dos valores da MQE e alimentação da rede neural 

Backpropagation. Logo em seguida da execução do modelo de predição Backpropagation foi 
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utilizado a tecnologia weight application to failure times (WAFT) para finalmente obter a predição 

da vida do rolamento, baseado no monitoramento da degradação do elemento de máquina por meio 

do sinal de vibração. 

Wong [13] foi utilizado o Mapa Auto-Organizável modificado para detecção automatizado do 

monitoramento das condições de máquina (MCM) usando sinal de vibração processado a partir da 

técnica de densidade espectral de potência. Experimentos usando conjuntos de dados de vibração 

com até oito sensores mostraram alta precisão na classificação e robustez em diferentes aplicações 

de monitoramento das condições.  

Yang [14] utilizou a teoria da ressonância adaptativa (ART) em conjunto com a rede neural de 

Kohonen para o diagnóstico de falhas em máquinas rotativas, por meio do tratamento dos sinais de 

vibração e em comparação com a SOM, LVQ e RBF (função de base radial), tendo uma taxa de 

sucesso de 100%, enquanto as demais foram de 93% para a SOM, 93% para LVQ e 89% para a 

RBF. In Ref. [15] foi utilizado a rede SOM para identificação do estado do desgaste da ferramenta 

de usinagem, por meio da coleta dos sinais de vibração e deformação, cujo tratamento do sinal foi 

realizado em domínio frequência e com uso do pacote de análises Wavelet. Foram utilizados dois 

conjuntos de ferramentas para teste da rede e um terceiro conjunto para validação. 

O trabalho tem por objetivo apresentar uma nova metodologia na detecção e monitoramento de 

falhas tribológicas em motores a combustão interna, por meio da aprendizagem de máquina pelo 

método não supervisionado e big data, através de técnicas de processamento de sinais aliadas a 

algoritmos de redes neurais artificiais (RNA) e análise de clusters. O restante do artigo está 

disposto das seguintes etapas. A seção 2 tem inicio com a descrição do desenvolvimento do 

sistema, explicando os métodos de transformação de sinal e processamento de recursos, como 

também a modelagem do Mapa Auto-Organizável. A seção 3 se trata dos conjuntos de dados 

experimentais, onde está descrito o desenvolvimento da bancada de análise tribológica em motores 

a combustão interna, a preparação dos corpos-de-prova, procedimento experimental e as técnicas de 

análise dos dados. A seção 4 apresenta os resultados experimentais. Finalmente a seção 5 com as 

conclusões. 

2. Desenvolvimento do sistema 

Os sinais de vibração e nível de pressão sonora obtidos do motor a combustão interna incluem não 

apenas informações relacionadas ao desempenho termodinâmico do sistema, mas também 

informações geradas a partir das condições tribológicas dos elementos em contato. Portanto, 

desenvolvendo um algoritmo capaz de selecionar os recursos relacionados à condição de falha e 

classificar com precisão o tipo de recurso que está ativando no momento de ocorrência, é de 

extrema importância para o monitoramento da condição de falhas no sistema. Este estudo integra 

algoritmos de processamento de sinal e algoritmos de mapeamento auto-organizável (SOM) para 

identificar os conjuntos de neurônios que ativam em determinada condição de falha. Para verificar 

o desempenho da SOM, o algoritmo de clusterização pelo método de Ward’s foi adotado para 

design de classificador e os resultados foram comparados com a rede neural por meio de uma 

matriz confusão, onde a rede foi treinada e validade. 

 

2.1 Transformação de sinal e processamento de recursos 

Os sinais coletados foram no domínio tempo, onde esses foram transformados em sinal de domínio 

frequência por meio da Transformada Rápida de Fourier. Devido a limitação do uso da ferramenta 

Transformada Rápida de Fourier (FFT) em sistemas cujo sinal é não-periódico. Os sinais no 

domínio frequência foram divididas em intervalos, relativos as bandas de oitavas de frequência, 

onde foi extraído a energia do sinal para cada banda. 
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2.2 Self-Organizing Maps 

 

O algoritmo responsável pela criação do Self-Organizing Map surge primeiramente iniciando os 

pesos sinápticos W, de todos os neurônios da rede, definidos como   [          ]
 , 

inicialmente atribuídos a valores aleatórios. A partir da iniciação da grade, são realizados três 

passos para a formação do Self-Organizing Map: a competição, cooperação e adaptação sináptica. 

 

Para modelar o processo competitivo, considere um vetor de entrada    em que m represente a 

dimensão do espaço de entrada de dados. O vetor peso sináptico do neurônio j seja representado 

por     j = 1, 2, ... l, onde l é o número total  de neurônios na grade. Lembrando que, o vetor 

sináptico de cada neurônio deve possuir a mesma dimensão vetorial que o espaço de entrada. Após 

isso, compare os produtos internos   
   para j = 1, 2, ..., l para cada neurônio e selecione o maior. 

Com isso teremos a localização onde a vizinhança topológica dos neurônios excitados deve ser 

centrada. 

 

A maximização do produto interno é matematicamente equivalente a minimização da distância 

euclidiana entre os vetores x e    encontrando o índice i(x), dado pela equação (1). 

  ( )         ||    ||                                                                                                   (1) 

 

O neurônio i que melhor satisfaz a condição é denominado neurônio vencedor, ou Best Matching 

Unit (BMU), para o vetor de entrada x. Dependendo da aplicação, a resposta da grade pode ser 

tanto o índice do neurônio vencedor quanto o vetor de peso sináptico mais próximo do vetor de 

entrada. Ao se tratar da modelagem do processo cooperativo é necessário ter conhecimento que o 

neurônio vencedor se localiza no centro de uma vizinhança topológica de neurônios cooperativos e 

que a excitação do neurônio vencedor altera fortemente os neurônios posicionados em sua 

vizinhança imediata, fazendo com que a distância lateral dos neurônios em torno do neurônio 

vencedor decaia suavemente. A vizinhança topológica     entre o neurônio vencedor i e o conjunto 

de neurônios excitados j pode ser modelada a partir da função gaussiana: 

 

        (
     

 

   
)                                                                                                                              (2) 

 

Em que      representa a distância lateral e     é uma função unimodal da distância      , desde que a 

vizinhança      seja simétrica em relação ao ponto máximo definido por       , e a amplitude a 

vizinhança topológica      decresça monotonamente com o aumento da distância lateral     .  A 

distância lateral      para uma grade unidimensional pode ser dada a partir de um inteiro igual a |j – 

i|, já para uma grade bidimensional a distância lateral é definida como        |     | 
,
 em que   

representa o vetor discreto do neurônio excitado    e do neurônio vencedor   . Uma característica 

importante da SOM é que o tamanho da vizinhança topológica diminui com o tempo, se 

considerarmos que a largura efetiva   tenha como parâmetro dependente o tempo discreto, temos 

um decaimento exponencial expresso por equação (3). 

 

 ( )       (
  

  
)                                                                                                                 (3) 

Com isso a modelagem da vizinhança topológica     diminui de maneira correspondente ao 

aumento do tempo   e com o decréscimo exponencial da largura efetiva  . Como visto na equação 

(4). 

    ( )( )                                                                                                                                     (4) 
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Por fim temos o processo adaptativo sináptico na formação de um Self-Organizing Map e suas 

características. É necessário lembrar que para que a grade seja auto-organizável, é preciso que o 

vetor de peso sináptico    do neurônio   da grade se modifique em relação ao vetor de entrada x. 

Para que seja satisfeita a condição da hipótese Hebbiana para aprendizagem não-supervisionada é 

necessário incluir um termo de esquecimento -  (  )  , em que  (  ) é uma função escalar 

positiva de    e  que    se o peso sináptico do neurônio  . Sendo exigido que  (  )          

 . 

Com isso, é possível expressar a modificação do vetor peso do neurônio   da grade a partir do 

termo Hibbiano (    ) e o termo de esquecimento ( (  )  ), como visto na equação (5): 

          (  )                                                                                                                     (5) 

Em que   é o parâmetro da taxa de aprendizagem do algoritmo. Considerando  (  )      e 

       ( ), temos que: 

         ( )(    )                                                                                                                    (6) 

Com isso, temos que o vetor de peso atualizado   (   ) é definido pela equação (7): 

  (   )    ( )   ( )    ( )( ) (    ( ))                                                                          (7) 

O qual é aplicado em todos os neurônios da vizinhança topológica do neurônio vencedor. 

Conforme observado na equação do peso atualizado, o parâmetro da taxa de aprendizagem é 

variável no tempo e corresponde a uma aproximação estocástica, satisfação essa que pode ser 

atendida utilizando um decaimento exponencial para  ( ), como consta na equação (8): 

 ( )       (
  

  
)                                                                                                               (8)  

3. Experimental data sets 

 

3.1. Ensaios tribológicos em motor a combustão interna 

Os dados experimentais utilizados neste trabalho foram retirados de uma bancada de ensaios 

tribológicos em motores a combustão interna. A Fig.1 mostra o layout da máquina, a qual consiste 

em um motor a combustão interna ciclo Otto acoplado, no eixo do virabrequim, a um gerador 

monofásico, cuja solicitação de carga foi proveniente de um banco resistivo. Anéis de segmento e 

as válvulas de escape danificadas foram inseridas no motor, e sua vibração e nível de pressão 

sonora foram medidos por um acelerômetro e um decibelímetro através de um módulo de aquisição 

de sinal.  

 

Fig.1. Layout da bancada de ensaios tribológicos em motores a combustão interna 
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O motor a combustão interna ciclo Otto é do tipo estacionário, de marca NMG65 Nagano, com uma 

potência de 6,5 hp, 196 cilindradas e taxa de compressão de 8.5:1. O gerador é monofásico de dois 

polos, de marca FG-2500, cuja potência nominal é 2,4 kW com sistema regulador de tensão e um 

dispositivo proporcional com a frequência da rede, que mantem a rotação do motor a uma faixa 

constante próximo de 3600 rpm. O banco resistivo de 2 kW é munido de dez lâmpadas florescentes 

de 250 W. 

O sistema de instrumentação para coleta dos sinais de vibração e nível de pressão sonora, consistiu 

no uso de um transdutor de vibração de marca B&K com sensibilidade de 9,931 mv/g e um 

decibelímetro de marca SKDEC-02 com a taxa de aquisição de 8KS/s, os quais foram ligados aos 

módulos de vibração NI 9233 com conversor analógico de 24 bits e o módulo de tensão NI 9205, 

ambos da empresa National Instruments. Foram ainda acoplados a um conversor A/D NI cDAQ-

9178 da National Instruments. 

O sensor de vibração foi acomodado ao parafuso do cabeçote do motor o sensor de vibração 

magnético, próximo aos sistemas de acionamento das válvulas e das aletas do cilindro (em 

orientação axial ao movimento do pistão do motor a combustão interna). Já o decibelímetro foi 

fixado próximo a região do cilindro do motor. 

3.2. Preparação de amostras 

Nesta etapa serão descritos os procedimentos na elaboração dos corpos-de-prova que simulam o 

desgaste nos anéis de segmento e na válvula escape, a partir da simulação do desgaste radial dos 

anéis de segmento, da simulação de folga entre o guia e haste da válvula e o desgaste da haste da 

válvula. 

3.2.1. Anel de segmento 

Para a análise de modos de falhas tribológicas nos anéis de segmento, foi introduzida falha no anel 

de compressão corta-fogo, com o intuito de captar as assinaturas de falhas para aprendizagem e 

reconhecimento da rede neural. Dessa forma, pôde ser simulada uma das principais falhas 

apresentadas: o desgaste radial. 

Para simular o desgaste radial do anel de segmento de compressão tipo corta-fogo, foi realizado um 

corpo-de-prova, desgastado na região de abertura do anel de segmento. O anel de compressão foi 

desgastado na dimensão aproximada à dimensão do limite de uso do dispositivo, segundo a 

especificação do manual de serviços da Honda, levando em consideração que o motor Honda 

GX200 possui características similares ao motor utilizado nos ensaios. 

Posterior ao desbaste, foi então mensurada a abertura do anel de segmento com o uso de um 

calibrador de folga 0,05-1 mm da Vonder, com o anel inserido a 5 mm no interior do cilindro. A 

Fig.2 mostra o método de análise para a medição da abertura do anel de segmento. 

Segundo o Manual Honda de padrões de manutenção do motor GX200 (similar ao NMG65) a folga 

das extremidades dos anéis de compressão deve possuir um padrão de até 0,4 mm e seu limite de 

uso de 1 mm. O Quadro 1 evidencia as medidas de dimensões nominais dos anéis de segmento, 

dimensões do desgaste e a medida contida no manual tomado por base. 

3.2.2. Válvula de escape 

O presente estudo tem como uma das metas estudar a influência do desgaste no par tribológicos 

guia de válvula-haste da válvula, por meio da folga entre os contatos desses elementos e a perda 

diametral da haste das válvulas de admissão e escape. Para simular a folga entre o guia de válvula e 

a haste da válvula foi desenvolvido um corpo-de-prova para a válvula de escape, tendo por base o 

Manual de Serviços Honda do motor GX200. O mesmo especifica o limite de uso de folga da haste, 
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sendo 0,12 mm para a válvula de escape. O método usado para simular o efeito da folga foi a partir 

do desgaste da haste da válvula, por meio de lixamento. 

Quadro 1. Dimensão do corpo-de-prova, relacionando as dimensões nominais, dimensões de 

desgaste, dimensões da abertura radial do anel de segmento e os dados do Manual Honda 

 

 

Fig.2 Técnica de medição da abertura radial do anel de segmento utilizando calibrador de folga 

 

Já para simulação da perda diametral externa da haste, foi desenvolvido um corpo-de-prova para 

válvula de escape, utilizando também como base o Manual de Serviços Honda do motor GX200, 

que especifica o limite de uso do diâmetro externo da haste da válvula como sendo, 5,275 mm para 

a válvula escape. A introdução da falha foi por meio do lixamento da região da haste das válvulas. 

O Quadro 2, mostra os valores quantitativos das dimensões nominais de projeto, dimensão dos 

corpos-de prova e limites de uso das válvulas de admissão e escape segundo o Manual Honda. 

Para determinação da dimensão desgaste dos corpos-de-prova, foi utilizado um micrometro 

analógico de resolução 0,01 mm, 0-25 mm de marca MITUTOYO, mensurando cinco vezes no 

mesmo ponto e posteriormente retirado a média e o desvio-padrão. 

3.3. Procedimento experimental 

 

Todos os procedimentos utilizados para a coleta dos dados tanto das condições de não 

conformidade quanto das condições originais do motor a combustão interna foram aquisitados sob 

as determinadas condições: 

 Regime dinâmico em carga resistiva de 0 kW, 0,5 kW, 1 kW e 1,5 kW. 

 Duração de 120 segundos. 

 Taxa de aquisição de 8 KHz para os instrumentos principais. 

Anel de compressão corta-fogo 

Dimensão 

nominal 

Dimensão da 

abertura padrão 

Dimensão 

desgaste 

Dimensão da 

abertura com 

desgaste 

Limite de 

uso 

 

7,00 mm 0,25 mm 7,85 ± 0,03 mm 0,85   mm 1,00 mm  
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Quadro 2. Dimensões dos corpos-de-prova, relacionando as dimensões nominais, dimensões com 

desgaste, dimensões de folga e os dados de limite de uso do Manual Honda 

Válvulas de escape 

Folga da Haste/guia de válvula 

 

Diâmetro nominal 

da haste 

 Diâmetro da haste 

com desgaste 

 Dimensão da folga 

haste/guia com 

desgaste 

 Limite de uso 

5,44 mm 5,39 ± 0,01 mm 0,09 ± 0.01 mm 0.12 mm 

Diâmetro Externo 

 

Diâmetro nominal 

da haste 

 Diâmetro da haste 

com desgaste 

 Dimensão da folga Limite de uso 

         5,44 mm 5,25 ± 0,01 mm - 5.275 mm 

  

No referente as condições iniciais de cada ensaio, para efeitos metodológicos e para a padronização 

das coletas de dados e condições de termodinâmicas do motor a combustão interna. Foi 

desenvolvido um protocolo experimental de forma a garantir padrões de repetibilidade e 

reprodutibilidade de coleta. O protocolo experimental pode ser representado segundo a Fig.3.  

 

Fig.3 Protocolo do procedimento de ensaio 

A primeira etapa do protocolo consiste em acionar o motor em regime sem carga, por um período 

de três minutos. Em seguida o motor é resfriado, com uso de um ventilador ilustrado na Fig.3, 

durante dez minutos. Após essa etapa, a bancada é novamente acionada durante três minutos, sendo 

um minuto dado apenas para atuação em regime (sem coleta do sinal) e dois minutos de coleta de 

dados, logo após mais dez minutos de resfriamento do motor e a repetição dos processos 

mencionados para uma nova coleta de dados. 
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Os ensaios foram realizados com o equipamento em operação normal e em três condições de falhas 

(folga entre o guia e a haste da válvula de escape, desgaste da haste da válvula de escape e desgaste 

radial do anel de segmento compressão), variando sua carga em 0 kW, 0,5 kW, 1 kW e 1,5 kW, 

totalizando de 16 experimentos, descritos no Quadro 3, cada um com 1.024.000 milhões amostras 

de coleta de vibração e 1.024.000 milhões amostras de coleta de nível de pressão sonora. 

Quadro 3. Descrição dos experimentos 

Experimento 1 Condição sem falhas e sem carga 

Experimento 2 Condição sem falhas e carga de 0,5 kW 

Experimento 3 Condição sem falhas e carga de 1 kW 

Experimento 4 Condição sem falhas e carga de 1,5 kW 

Experimento 5 Condição de falha tipo folga entre a válvula de escape - guia de válvula 

e sem carga 

Experimento 6 Condição de falha tipo folga entre a válvula de escape - guia de válvula 

e com carga de 0,5 kW 

Experimento 7 Condição de falha tipo folga entre a válvula de escape - guia de válvula 

e carga de 1 kW 

Experimento 8 Condição de falha tipo folga entre a válvula de escape - guia de válvula 

e carga de 1,5 kW 

Experimento 9 Condição de falhas tipo desgaste na haste da válvula de escape e sem 

carga 

Experimento 10 Condição de falhas tipo desgaste na haste da válvula de escape e carga 

de 0,5 kW 

Experimento 11 Condição de falhas tipo desgaste na haste da válvula de escape e carga 

de 1 kW 

Experimento 12 Condição de falhas tipo desgaste na haste da válvula de escape e carga 

de 1,5 kW 

Experimento 13 Condição de falha tipo desgaste radial do anel de segmento compressão 

e sem carga 

Experimento 14 Condição de falha tipo desgaste radial do anel de segmento compressão 

e carga de 0,5 kW 

Experimento 15 Condição de falha tipo desgaste radial do anel de segmento compressão 

e carga de 1 kW 

Experimento 16 Condição de falha tipo desgaste radial do anel de segmento compressão 

e carga de 1,5 kW 

 

3.4 Técnicas de Análise de Dados 

As técnicas de análise de dados foram divididas em sete etapas: etapa de aquisição de sinal, 

domínio frequência, etapa de densidade de frequência, etapa da rede neural: análise global, etapa de 

clusterização, etapa de associação e etapa de classificação/validação, conforme a Fig.4. Na etapa de 

aquisição do sinal, foram coletados os sinais de vibração, nível de pressão sonora. Os sinais de 

vibração e nível de pressão sonora foram coletados em uma taxa de amostragem de oito mil pontos 

por segundo (8 kHz). O tempo de aquisição total foi de 120 segundos (1.024.000 amostras por 

sensor), com início da coleta após sessenta segundos do funcionamento do motor em regime (com 

carga ou sem carga). 

Posterior a etapa de aquisição dos sinais foi realizada a etapa de domínio frequência, onde as 

amostras coletadas (vibração e nível de pressão sonora) foram tratadas no domínio frequência, com 
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a realização da Transformada Rápida de Fourier (FFT) a cada dois segundos de aquisição, 

totalizando sessenta espectros de frequência para cada ensaio. Os dados de desempenho foram 

coletados nos 120 segundos, totalizando 60 pontos por ensaio. 

Na terceira etapa, etapa de densidade de frequência, cada espectro de vibração e nível de pressão 

sonora foram submetidos a janelamentos de frequência baseados nas 10 primeiras bandas de 

oitavas de frequência do sinal, são elas: 3-6, 6-12, 12-24, 24-48, 48-96, 96-192, 192-384, 384-768, 

768-1536, 1536-3072 Hz. As quais após separadas foram extraídos os valores da energia de cada 

janela de frequência, por meio do valor Root Mean Square (RMS). Totalizando uma matriz de 

60x20 (bandas de oitavas de frequência dos sinais de vibração e nível de pressão sonora) para cada 

ensaio. A formula utilizada para o cálculo do valor da energia do sinal discreto RMS foi: 

     √
 

 
∑     
                                                                                                               (9)

    

 

                                (a)            (b) 

Fig.4 Exemplo de Matriz U  (a) bidimensional e  (b) tridimensional dos dados coletados das 

falhas em uma condição de carga 

A figura ilustra as etapas dos tratamentos dos sinais de vibração e nível de pressão sonora. A etapa 

da rede neural consistiu no uso de uma rede neural não-supersionada de Kohonen, conhecida como 

Self-Organizing Map (SOM), que desenvolve um mapa a partir do grau de similaridade dos 

neurônios, baseados no vizinho mais próximo e neurônio vencedor. O Software utilizado para 

tratamento dos sinais e aplicação da rede neural foi o MatLab 2016. Foram utilizados 66,6% dos 

dados coletados para treinamento da rede neural e 33,3% para certificação e confiabilidade do mapa 

de Kohonen. A matriz U foi composta de uma matriz de 15x15 neurônios hexagonais, utilizando 

sistema linear para inicialização dos pesos e método gaussiano para o cálculo de vizinhança.  

Na análise global dos resultados, foi gerado um mapa de Kohonen bidimensional e tridimensional, 

baseado na matriz U do mapa auto-organizável de Kohonen, que relacionava todas as falhas em 

todas as cargas, para as matrizes de oitavas de vibração e nível de pressão sonora, através de uma 

matriz treinamento geral de 640x20 dados. A Fig.4 evidencia um exemplo de matriz U 

bidimensional e tridimensional dos dados de falhas em uma condição de carga. As figuras (a) e (b) 

mostram a distribuição de neurônios de matriz 15x15, os quais quanto maior os tons de azul, mais 

similaridade os neurônios possuem. Diferentemente, quanto mais a cor do neurônio tende ao 

vermelho, mais o comportamento do neurônio diverge dos demais. 

A matriz U tridimensional trás consigo uma melhor maneira de entendimento quanto as fronteiras 

de subconjuntos originados pelos neurônios, por se assemelhar com um mapa topográgico, é 
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possível identificar as zonas de grupos, bem como a relação de semelhança por meio da topografia 

de fronteira. Indicando que, quanto maior a topografia de fronteira, maior as cores do neurônio se 

aproximam do vermelho, em consequência maior o grau de dissimilaridade entre os grupos 

vizinhos. 

A etapa de clusterização consistiu na mineração dos dados dos neurônios da matriz U para cada 

condição de carga e condição geral utilizando o método de Ward’s, com o objetivo de criar 

subconjuntos de neurônios baseados na decodificação de padrões por tipos de falhas. 

A Etapa de associação foi marcada pela nomeação dos agrupamentos encontrada pela clusterização, 

com as condições de falhas inseridas no ensaio. Esta etapa tratou de um procedimento 

supervisionado, gerado a partir de uma matriz confusão entre os dados reais de treinamento das 

condições de falhas, rotulado em 160 pontos divididos pelos números de condições de falhas, com 

os dados preditivos originados a partir da normalização dos dados da rede neural. 

Com os dados da matriz confusão foi possível gerar uma tabela de relação entre os subconjuntos 

dos neurônios e as condições de falha do motor. Posteriormente foi plotado a Matriz U 

identificando os subconjuntos de neurônios por cores, sendo cada condição de falha associada com 

diferentes regiões no mapa, denominado clusters de neurônios. 

Na Etapa de classificação/validação os dados de validação, 33,3% dos dados coletados, uma matriz 

320x20 para validação global. Foram classificados e validados a partir do teste baseado em matriz 

confusão. Gerando uma matriz de validação, o qual as linhas representam a condição de falha e as 

colunas os clusters de neurônios. 

A matriz confusão consistiu em relacionar os dados reais de teste de condições de falhas, rotulados 

em 160 pontos dividos em quatro grupos, com os dados preditivos originados a partir da 

normalização dos dados da rede neural Kohonen. 

4. Resultados e Discussão 

 

No tratante a etapa de resultados das condições de falhas no motor a combustão interna na 

formatação de imposição global de carga, foram analisadas as quatro condições de falhas, a saber: 

condição sem falha, condição folga entre a guia e haste da válvula de escape, desgaste na haste da 

válvula de escape e desgaste radial do anel de segmento de compressão, nas quatro condições de 

carga, a saber: sem carga (0 kW), 0,5 kW, 1 kW e 1,5 kW. Os dados de condições de falhas 

submetidos a condição global de carga foram analisados a partir das etapas de domínio frequência, 

etapa de densidade de frequência, etapa de rede neural: análise das falhas por carga, etapa de 

clusterização, etapa de associação e etapa de classificação/validação. 

 

Sendo seus resultados extraidos a partir da análise da matriz U bidimensional, matriz U 

tridimensional, etapa de associação com uso da matriz pelo método de clusterização Ward’s, da 

matriz U de associação, que relaciona o tipo de condição atraves de legenda e cores da matriz U e a 

matriz de validação. A Fig.5. evidencia a matriz U bidimensional da rede SOM, onde é possível 

visualisar desesseis subconjuntos bem delimitados, em consonância com a quantidade de condições 

de falhas e condições de carga padronizadas nessa etapa dos resultados. A matriz U tridimensional, 

Fig.6, mostra a matriz U em 3D para condição global de carga, evidenciando de forma mais clara a 

condição de fronteira entre os subconjuntos. 
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Fig.5 Matriz U bidimensional da rede SOM na condição de análise global 

 

              
Fig.6 Matriz U tridimensional da rede SOM na condição de análise global 

  

A etapa de associação entre as condições de falhas, relaciona as condições de falhas e de cargas 

com os subconjuntos do matriz de neuronio (matriz U), a partir da matriz de associação realizada 

pelo método de clusterização Ward’s, utilizando a matriz de treinamento. Conforme demonstra a 

Quadro 4.  
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Quadro 4. Matriz de associação dos subconjuntos de neurônios da Matriz U com as condições de 

falhas, utilizando a clusterização pelo método Ward’s. condição de análise global 

 

Cx/Co C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 

SF00 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 

SF05 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 

SF10 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 

SF15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 

DV00 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 

DV05 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 

DV10 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 

DV15 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 

FV00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 

FV05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 

FV10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 

FV15 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 

DA00 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

DA05 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

DA10 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 

DA15 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 

            Cx – Cluster 

          Co – Condição 

          SF00 – Sem falha e sem carga 

          SF05 – Sem falha e com carga de 0,5 kW 

          SF10 – Sem falha e com carga de 1 kW 

          SF15 – Sem falha e com carga de 1,5 kW 

          DE00 – Desgaste na haste da válvula de escape e sem carga 

          DE05 – Desgaste na haste da válvula de escape e com carga de 0,5 kW 

          DE10 – Desgaste na haste da válvula de escape e com carga de 1 kW 

          DE15 – Desgaste na haste da válvula de escape e com carga de 1,5 kW 

          FE00 – Folga entre a guia e haste da válvula de escape e sem carga 

          FE05 – Folga entre a guia e haste da válvula de escape e com carga de 0,5 kW 

          FE10 – Folga entre a guia e haste da válvula de escape e com carga de 1 kW 

          FE15 – Folga entre a guia e haste da válvula de escape carga de 1,5 kW 

          DA00 – Desgaste radial do anel de segmento compressão e sem carga 

          DA05 – Desgaste radial do anel de segmento compressão e com carga de 0,5 kW 

          DA10 – Desgaste radial do anel de segmento compressão e com carga de 1 kW 

          DA15 – Desgaste radial do anel de segmento compressão e com carga de 1,5 kW 
 

Os números apresentados na matriz correspondem aos 66,6% dos dados utilizados na matriz de 

treinamento, cuja sua matriz possui dimensão de 640x20, sendo uma matriz 40x20 por condição de 

falha. A partir da matriz U de associação foi possível identificar as condições de falhas e condições 

de carga por subconjuntos na matriz U. Como demonstrado na Fig.7.  

 

A partir da matriz U de associação é possível identificar condições de carga e falhas tão similares 

entre si, que essas constituiram um mesmo cluster, é o caso da condição de folga na guia de válvula 

e haste de válvula de escape nas condições de carga em 0 kW, 0,5 kW e 1 kW, como tambem no 

caso da condição desgaste da haste na carga 0 kW e 0,5 kW. Sendo possível afirmar que a dinâmica 

do comportamento da falha é a mesma para esse cluster independente da carga inserida no motor a 

combustão interna, desde que a carga seja as mencionadas para os dados cluters.  
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            SF00 – Sem falha e sem carga 

          SF05 – Sem falha e com carga de 0,5 kW 

          SF10 – Sem falha e com carga de 1 kW 

          SF15 – Sem falha e com carga de 1,5 kW 

          DE00 – Desgaste na haste da válvula de escape e sem carga 

          DE05 – Desgaste na haste da válvula de escape e com carga de 0,5 kW 

          DE10 – Desgaste na haste da válvula de escape e com carga de 1 kW 

          DE15 – Desgaste na haste da válvula de escape e com carga de 1,5 kW 

          FE00 – Folga entre a guia e haste da válvula de escape e sem carga 

          FE05 – Folga entre a guia e haste da válvula de escape e com carga de 0,5 kW 

          FE10 – Folga entre a guia e haste da válvula de escape e com carga de 1 kW 

          FE15 – Folga entre a guia e haste da válvula de escape carga de 1,5 kW 

          DA00 – Desgaste radial do anel de segmento compressão e sem carga 

          DA05 – Desgaste radial do anel de segmento compressão e com carga de 0,5 kW 

          DA10 – Desgaste radial do anel de segmento compressão e com carga de 1 kW 

          DA15 – Desgaste radial do anel de segmento compressão e com carga de 1,5 kW 

Fig.7 Matriz U de associação da rede SOM da análise global 

 

As condições de falhas submetidas a carga de 1,5 kW foram todas dispostas na região inferior do 

mapa, contituindo um super cluster, mostrando que a máquina térmica submetida a essas condições, 

possui um comportamento totalmente atípico quando relacionado com as demais cargas. De 

maneira ainda mais atípica que os demais, o desgaste do anel de segmento de compressão na 

condição de carga de 1,5 kW pode ser entendido como o pior cenário de criticidade devido ao 

maior distanciamento dos neurônios de fronteira, prevista na matriz U tridimensional. Como etapa 

final, a tabela x indica a matriz de validação da rede, com uso dos 33,3% dos dados totais, dispostos 

numa matriz 320x20. 

 

A partir da tabela x de validação da rede neural para análise global, é possível afirmar que a rede 

neural utilizada para identificação das condições de falhas, teve uma eficiência de 100%. Em todas 

as etapas da análise dos resultados, o mapa neural de falhas por condição se mostrou como uma 

técnica eficaz na categorização da falha e categorização da falha por carga, sendo considerado um 

método eficiente para a previsão e diagnóstico inteligente de falha, em tempo real.  
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Quadro 5. Matriz de validação da rede neural para condição de carga à 1,5 kW  

Cx/Co C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 

SF00 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 

SF05 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 

SF10 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 

SF15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 

DV00 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 

DV05 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 

DV10 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 

DV15 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 

FV00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 

FV05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 

FV10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 

FV15 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 

DA00 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

DA05 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

DA10 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 

DA15 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 

            Cx – Cluster 

          Co – Condição 

          SF00 – Sem falha e sem carga 

          SF05 – Sem falha e com carga de 0,5 kW 

          SF10 – Sem falha e com carga de 1 kW 

          SF15 – Sem falha e com carga de 1,5 kW 

          DE00 – Desgaste na haste da válvula de escape e sem carga 

          DE05 – Desgaste na haste da válvula de escape e com carga de 0,5 kW 

          DE10 – Desgaste na haste da válvula de escape e com carga de 1 kW 

          DE15 – Desgaste na haste da válvula de escape e com carga de 1,5 kW 

          FE00 – Folga entre a guia e haste da válvula de escape e sem carga 

          FE05 – Folga entre a guia e haste da válvula de escape e com carga de 0,5 kW 

          FE10 – Folga entre a guia e haste da válvula de escape e com carga de 1 kW 

          FE15 – Folga entre a guia e haste da válvula de escape carga de 1,5 kW 

          DA00 – Desgaste radial do anel de segmento compressão e sem carga 

          DA05 – Desgaste radial do anel de segmento compressão e com carga de 0,5 kW 

          DA10 – Desgaste radial do anel de segmento compressão e com carga de 1 kW 

          DA15 – Desgaste radial do anel de segmento compressão e com carga de 1,5 kW 

 

Quanto ao nível de criticidade referente ao cenário global de carga e falha, a condição de falha e de 

carga que mais contribuíram significativamente para o aumento do nível de criticidade, quando 

relacionado a cargas na condição sem falha, foi o desgaste radial do anel de segmento tipo 

compressão, submetido a carga de 1,5 kW. O que torna essa condição de falha a mais danosa 

quando comparada relacionada as demais falhas.  
 

5. Conclusões 

 

O presente estudo apresentou propôs inicialmente a criação de uma nova abordagem de detecção e 

classificação de falhas tribológicas através do uso combinado de técnicas de aprendizagem de 

máquinas e big data, aliando ferramentas de análise multivariadas baseadas em análise de 

agrupamento (clusters) e redes neurais artificiais não-supervisionadas (Mapa Auto-Organizável), 

com processamento de sinais, para elaboração de sistemas de manutenção inteligentes capazes de 

prever, diagnosticar e monitorar falhas em motores a combustão interna. Por meio do procedimento 

experimental e análise dos dados, foi possível desenvolver uma rede auto gerenciável para análise 
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de falhas em motores a combustão, na condição na condição global de falhas e cargas (0 kW; 0,5 

kW; 1 kW e 1,5 kW). Pôde-se verificar pelos resultados, que os três modos de falhas tribológicas 

(desgaste radial do anel de segmento, folga entre a guia de válvula e haste da válvula de escape e 

desgaste da haste da válvula de escape) e a condição sem falha, foram detectados e classificados 

pelo sistema criado, com 100% de precisão. A rede neural utilizada não encontrou dificuldades em 

detectar e classificar as falhas tribológicas inseridas experimentalmente no sistema eletromecânico 

estudado. 
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