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Resumen

El clutter es una sefal aleatoria interferente que usualmente se elimina con procesadores CFAR de
ventana deslizante, para lograr una deteccion precisa de los blancos de radar. A pesar del éxito de la
distribucion Log-Weibull en la representacién efectiva de varios tipos de clutter, no se ha estudiado la
relacién entre su parametro de forma y el factor de ajuste 6ptimo de los procesadores. El articulo
propone un sistema basado en redes neuronales que devuelve el factor de ajuste 6ptimo a aplicar para
cualquier parametro de forma Log-Weibull en el intervalo de valores posibles. Se comprobd mediante
simulacién computacional que, si se anexan las redes neuronales a los procesadores, se logra mantener
la probabilidad de falsa alarma operacional muy cercana al valor concebido en el disefio, garantizandose
asi el cumplimiento del criterio de Neyman-Pearson. El desarrollo presentado tiene aplicacion en la
mejoria de la deteccidn en las costas cubanas, donde aparecen escenarios heterogéneos que incluyen
alternancia entre altas y bajas profundidades, manglares, aguas salobres, islotes y vegetacién acuatica
prominente. Estos fenémenos afectan el comportamiento del clutter provocando fluctuaciones del
parametro de forma de la distribucion del fondo.

Palabras claves: clutter de radar, distribucién Log-Weibull, procesadores CFAR, criterio Neyman-
Pearson, probabilidad de falsa alarma

Abstract

The clutter is a random interfering signal that is commonly canceled with sliding window CFAR
processors, for achieving an accurate detection of radar targets. Despite the success of the Log-Weibull
distribution in the effective representation of several types of clutter, the relationship between its shape
parameter and the optimal scale factor of the processors have not been studied. The paper proposes a
system based on neural networks for computing the optimal scale factor to be applied for any Log-Weibull
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shape parameter in the range of possible values. It was verified through computer simulation that, if the
neural networks are attached to the processors, the operational false alarm probability remains close to
the value conceived in the design, satisfying thus the Neyman-Pearson criterion. The application of the
presented technique lies in the improvement of the detection in Cuban coastal regions, where
heterogeneous scenarios are found containing different depth levels, mangrove swamps, brackish water,
islets and prominent aquatic vegetation. These scenarios disturb the clutter behavior provoking
fluctuations in the shape parameter of the background.

Key words: radar clutter, Log-Weibull distribution, CFAR processors, Neyman-Pearson criterion, false
alarm probability.

INTRODUCCION

El clutter es una sefial aleatoria interferente que aparece en las mediciones de radar y que debe ser cancelada
para lograr la deteccién precisa de los blancos. Cuando el haz de radar explora el medio circundante, ademas de
reflejarse en los objetivos cercanos, produce ecos en otras superficies que no son de interés [1]. Asi, se obtiene
en el receptor una contribucion indeseable que puede alcanzar niveles elevados y confundirse con los blancos.
Cuando esta contribucién proviene de la superficie del mar, se dice que se esta en presencia de clutter marino.
Otros tipos de clutter muy conocidos son el terrestre y el atmosférico [2].

Para el disefio de mecanismos efectivos de cancelacion del clutter se hace necesaria su modelacion
estocastica. Las distribuciones Weibull [3], Log-normal [4], K [5] y Pareto [6] se utilizan en la actualidad con este
proposito. Sin embargo, se han reportado varios casos donde la distribucion Log-Weibull ha proporcionado un
mejor ajuste que las anteriores para clutter terrestre [7-9], marino [10-13] y atmosférico [14]. Aunque no se han
presentado argumentos validos en su contra, la comunidad de radares aun no ha adoptado esta distribucion, por
lo que su presencia en la literatura es aln reducida en relacién a los desarrollos existentes para Weibull, Log-
Normal, K y Pareto. La distribucion Log-Weibull, al igual que sus contrapartes, cuenta con un parametro de escala
y uno de forma, siendo el tltimo quien influye sobre la deteccion.

La deteccién de los objetivos de radar, y su discriminacién del clutter, se realiza tipicamente a través de
procesadores CFAR (Constant False Alarm Rate, Raz6n de Falsa Alarma Constante) de ventana deslizante [15].
Entre ellos, las alternativas CA-CFAR (Cell Averaging-CFAR, CFAR de Promediacién de Celdas), GO-CFAR
(Greater of-CFAR, CFAR de Seleccion Superior), SO-CFAR (Smaller Of-CFAR, CFAR de Seleccion Inferior) y
OS-CFAR (Ordered Statistics-CFAR, CFAR de Estadistica Ordenada) son las mas aplicadas [16]. Estas cuentan
con un factor de ajuste, o factor de escala, que permite adaptar el sistema a las condiciones del clutter y que
suele mantenerse fijo en correspondencia con el comportamiento promedio del fondo.

Sin embargo, si el parametro de forma del clutter varia en un amplio rango, el establecimiento de un factor de
ajuste fijo provocard que la probabilidad de falsa alarma (Pf) operacional experimente una varianza
excesivamente alta alrededor del valor concebido en el disefio [17]. Esto es un problema grave desde la
perspectiva tedrica pues se deja de cumplir el criterio de Neyman-Pearson y se pierde la propiedad CFAR. Desde
el punto de vista practico, la consecuencia es que ocurrirdn rafagas de falsas alarmas y de pérdidas de blancos
en la pantalla del radar, que reducirdn las capacidades de vigilancia de los dispositivos que dejardn de ser
invariantes en el tiempo.

En los estudios que relacionan a la distribucion Log-Weibull con el clutter se ha encontrado un amplio rango
de variacion del parametro de forma [7, 9-14, 18, 19], lo que coincide a lo hallado para otros modelos. Esto
significa que la problematica previamente descrita ocurre constantemente al explorar medios terrestres, marinos
y atmosféricos si no se aplica la necesaria adaptacion del factor de los procesadores. El problema se agrava
cuando se opera en entornos heterogéneos como los de las costas cubanas donde se puede encontrar
alternancia entre altas y bajas profundidades, manglares, aguas salobres, islotes, costas irregulares y vegetacion
acuatica prominente, condiciones que alteran el comportamiento estadistico del eco.

Como solucién, el autor presenta una técnica basada en redes neuronales para la seleccion éptima del factor
de ajuste del CA-CFAR, el GO-CFAR, el SO-CFAR y del OS-CFAR, a partir del conocimiento a priori del
parametro de forma de la distribucion Log-Weibull asumida para el clutter. El entrenamiento del mecanismo
neuronal se realiz6 a partir de resultados obtenidos de simulaciones de Monte Carlo realizadas sobre 30 millones
de muestras Log-Weibull generadas en computadora. La prueba mediante simulacion del método propuesto
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demostré que se logra mantener una probabilidad de falsa alarma cercana al valor concebido en el disefio, con
una precision que supera lo logrado en trabajos previos para otras distribuciones.

MATERIALES Y METODOS

Para La seccion actual comienza con la introduccion de la distribucion Log-Weibull que es el modelo de clutter
asumido para las simulaciones. Se abordan después los principios de operaciéon de los cuatro procesadores
utilizados. Seguidamente, se describe el algoritmo de simulaciones de Monte Carlo que produce el factor de ajuste
apropiado para cada detector teniendo en cuenta las variaciones del parametro de forma Log-Weibull, la
dimension de la ventana de deslizante y la probabilidad de falsa alarma de disefio. Por Gltimo, se presenta
brevemente la estructura de la red neuronal utilizada para generalizar los resultados de las simulaciones de Monte
Carlo a todo el rango posible de condiciones de operacion.

Distribucion Log-Weibull
La expresion de la PDF (Probability Density Function, Funcion de Densidad de Probabilidad)
Log-Weibull es [19]:

o exp [— (MTX)B] x>1 (@Y

Donde x es la amplitud reflejada, a es el pardmetro de escala y S es el de forma, que tiene una influencia
marcada en la deteccion. En cambio, el parametro de escala modifica la media de las muestras pero preserva la
proporcion entre ellas, por lo que no afecta el proceso de deteccion.

La distribucion Log-Weibull fue aplicada en la modelacion del clutter marino spiky (con magnitudes elevadas
frecuentes) por primera vez en [13], donde demostrd su superioridad con respecto al modelo Log-Normal que es
utilizado frecuentemente para angulos rasantes muy bajos, polarizacion HH y alta resolucidn. Otras aplicaciones
en clutter marino fueron presentadas en [10-12], reportandose también casos relacionados a clutter terrestre
[7-9] y atmosférico [14], donde se logra mejores ajustes que modelos de amplia adopcién como la distribucion K
o la Weibull.

El éxito de la distribucion Log-Weibull esta en el hecho de que su funcién de densidad de probabilidad se
posiciona entre la Weibull y la Log-Normal. La Log-Normal suele producir estimaciones superiores a las reales
sobre todo en la regién de la cola, mientras que la Weibull tiende a cometer errores por defecto. En cambio, el
modelo Log-Weibull tiene una cola larga y flexible en su forma [19].

El rango de interés de los valores posibles del parametro de forma Log-Weibull se tomé de los estudios
existentes. En [13] se encontrd 5,29 < 8 < 7,35, en [7] 7,76 < 8 < 10,77, en [9] B = 6,55, en [11] 17,72 < B <
20,99, en [12] 1,07 < B < 7,82, en [18] 5,05 < B < 20,68, en [10] 9,37 < 8 < 10,76, en [19] 1591 < B < 16,44,y
en[14] 11,93 < B < 16,4. Por tanto, se puede asegurar que el clutter distribuido Log-Weibull exhibe un parametro
de forma siempre dentro del rango 2,3 < § < 21.

e ) =2 (%)

a

Detectores CFAR de Ventana Deslizante

Los detectores de ventana deslizante aplicados en radar buscan garantizar la propiedad CFAR que responde
al criterio de Neyman-Pearson [20]. Este criterio plantea que la probabilidad de falsa alarma (Pf) toma
precedencia ante la probabilidad de deteccién, por lo que los procesadores buscaran principalmente garantizar
que la Py, se mantenga lo menos alejada posible del valor de disefio.

Para lograr lo anterior, se han aplicado varias estrategias consistentes en la detecciéon de los blancos por
comparacion con los valores de las celdas vecinas. La mas ampliamente difundida se denomina CA-CFAR, o
CFAR de promediacion, ya que estima el promedio del fondo a partir del célculo de la media aritmética de las
celdas vecinas.

Como se puede apreciar en la figura 1, el CA-CFAR calcula el promedio de las celdas vecinas X, ejecutando
primero la sumatoria y luego dividiendo por el total de celdas (N) que usualmente toma los valores de 8, 16, 32 o
64. Luego, el promedio es multiplicado por el factor de ajuste (T) para elevar el umbral que posteriormente sera
comparado con la magnitud de la celda bajo evaluacién (Y), definiéndose asi su pertenencia a la clase blanco.
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Fig. 1. Diagrama en bloques de un detector CA-CFAR

El punto clave del CA-CFAR, y del resto de las variantes aqui tratadas, es el factor T. A medida que la T
aumenta sera cada vez menos probable que una muestra de clutter sea equivocamente clasificada como blanco.
Para cumplir con la propiedad CFAR se debe subir la T lo suficiente como para que se cumpla un valor
determinado de P;. No obstante, la elevacion excesiva perjudica innecesariamente a la probabilidad de deteccion.
Entonces, el factor de ajuste optimo es aquel que cumple con la Pr de disefio pero no perjudica innecesariamente
a la probabilidad de deteccién.

Si bien realiza una estimacién certera del promedio del fondo, el CA-CFAR presenta dificultades cuando
aparecen heterogeneidades en el clutter. Por ejemplo, si varios blancos ocupan celdas consecutivas sus
amplitudes provocardn que el promedio hallado en la ventana deslizante sea demasiado elevado. Como
resultado, el blanco que ocupa la posicién Y puede no ser detectado. Se dice entonces que ha ocurrido un
enmascaramiento del objetivo.

Para prevenir estas situaciones se ha propuesto la aplicacion de las alternativas GO-CFAR, SO-CFAR y OS-
CFAR, siendo la ultima la mas popular. Las dos primeras variantes comparan las mitades anteriores y posteriores
de la ventana deslizante, y efecttan la estimaciéon del promedio solamente con la mayor (GO) o la menor (SO),
respectivamente. La diferencia principal es que la primera beneficia la probabilidad de falsa alarma y la segunda
la probabilidad de deteccion. Por su parte, el OS-CFAR ordena las muestras en la ventana y elige como promedio
a la que queda justamente en el centro. Asi, aunque se perjudica la estimacién precisa de la media del fondo, se
evitan los enmascaramientos. Cada uno de los procesadores cuenta con su respectivo factor de ajuste que
necesita ser reconfigurado para cumplir el criterio de Neyman-Pearson.

Algoritmo de Busqueda de los Factores de Ajuste Optimos

Para elegir el factor 6ptimo (T) es necesario tener en cuenta el total de celdas en la ventana deslizante (N),
la probabilidad de falsa alarma de disefio (Pf), la variante de procesamiento aplicada (CA, GO, SO 6 0S), y el
parametro de forma del clutter que puede asumirse como distribuido Log-Weibull (). Por tanto, para calcular los
valores 6ptimos hay que producir experimentos de Monte Carlo que incluyan todas estas variables.

Los experimentos se realizaron tomando como base 30 millones de muestras Log-Weibull que fueron
generadas utilizando la técnica de inversion de la funcién de distribucion acumulada [21]. Cada millon de muestras
fue creado con un valor diferente del parametro de forma, cubriendo el intervalo previamente discutido de 2,3 <
B < 21. Los primeros 20 valores de S se escogieron con una separacion uniforme dentro del rango conocido.
Entonces, se adicionaron otros diez valores en la region donde se comprobdé que existia una variacion mas notable
del comportamiento.

Las probabilidades de disefio seleccionadas fueron Pr = 1072, P, = 1073 y P, = 10~* que coinciden con las
empleadas para otras distribuciones en estudios similares [22-25]. Estas probabilidades son utiles en aplicaciones
de radar como la deteccion de blancos méviles.
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El procedimiento de obtencion de los valores T 6ptimos siguid una forma iterativa. En la primera iteracién se
tomo un millén de muestras y se procesé con un detector, por ejemplo el CA-CFAR, y una T de 0,1 que es un
valor muy bajo. Como todas las muestras eran de clutter, cada deteccion ocurrida se interpreté como una falsa
alarma. Por tanto, se midi6 la probabilidad de falsa alarma dividiendo la cantidad de detecciones erréneas entre
el total de muestras.

Como era de esperar, se obtuvo una P, muy alta dada la pequefia T elegida. La iteracion siguiente repitio el
procesamiento tras aumentar T, con lo que se obtuvo una P mas baja. Asi, se siguieron ejecutando iteraciones
realizandose una busqueda binaria donde se aumento o redujo T hasta encontrar el punto donde ocurrié una Py =
1072 con un error inferior al 1 %. En este momento concluyé la primera corrida del algoritmo, que requirié de
alrededor de 20 iteraciones, donde cada iteracion tardé cerca de un minuto en una computadora personal Intel
Core i5-4460 CPU (3,20 GHz) con 4 GBs de memoria RAM.

La secuencia anterior fue repetida cambiando cada una de las variables. Primero se establecieron P, = 1073
y Pr = 10~* en reemplazo de la P, = 1072 original. Luego se cambié el tamafio de la ventana entre los valores de
8, 16, 32 y 64. Después se modificd el procesador probando las cuatro alternativas mas utilizadas (CA, GO, SO
y OS). Por (ltimo, tras terminar con el primer millon de muestras se repitié la secuencia con el millén siguiente
hasta completar los 30 millones. Como resultado del algoritmo de busqueda, se obtuvieron 1 440 valores de T
gue caracterizan el comportamiento para un gran nimero de ocurrencias de las variables tratadas.

Red Neuronal para Reproducir Resultados

Las 1 440 Ts extraidas de los experimentos pueden ser almacenadas en tablas para su posterior aplicacion
en ambientes operacionales. Sin embargo, esto traeria dos problemas: (1) el tiempo de busqueda en la tabla
puede retrasar la operacion del detector, y (2) los valores intermedios no tabulados de g tendrian que ser
aproximados por algunos de los 30 incluidos en los experimentos.

Para evitar estos inconvenientes, se entrenaron cuatro redes neuronales para que devolvieran el valor de T a
aplicar ante cualquier ocurrencia de B y el resto de las variables de operacion. Cada red correspondié a uno de
los cuatro detectores en cuestion. Notese que en realidad no es necesaria la obtencién de valores intermedios
para Pr o N, que siempre tomaran alguno de los valores discretos tabulados.

La red neuronal entrenada tiene las caracteristicas mostradas en la tabla 1, que fueron tomadas de lo aplicado
en investigaciones relacionadas [26-28]. Para el mejor entendimiento del significado de estos parametros el lector
es referido a literatura especializada [29].

Tabla 1. Configuracion de las variables internas de lared neuronal

Variables de la Red Seleccién
Tipo de Red Red Alimentada hacia Adelante (Perceptron Multicapa)
Funcién de Entrenamiento BackPropagation (Levenberg-Marquardt)
Numero de Capas 3 (Capa de Entrada — Capa Oculta— Capa de Salida)
Funcién de Transferencia o Tangente Hiperbdlica Sigmoide (Capa Oculta), Funcion de
Activacion Transferencia Lineal (Capa de Salida)
Medicién del Error Error Medio Cuadratico
Divisién del Conjunto de 70 % Entrenamiento — 15 % Validacion - 15 % Prueba
Entrenamiento
Presentacion de las Muestras Entrenamiento por Lotes
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RESULTADOS Y DISCUSION

La presente seccion esta dedicada a ofrecer al lector los resultados obtenidos de las simulaciones, asi como
un analisis de los mismos. Para ello se divide la seccién en dos acapites. El primero analiza la influencia de las
variables de la simulacién sobre el valor del factor de ajuste obtenido; mientras que el segundo discute la
generalizacion de los resultados lograda a través de redes neuronales.

Influencia de las variables sobre el factor de ajuste

Para estudiar la influencia de las distintas variables sobre los resultados se divide el andlisis en varias graficas
gue reducen la dimension de la salida. Las curvas que se muestran en las figuras 2, 3 y 4 presentan la relacion
entre el parametro de forma Log-Weibull y el factor de ajuste del detector para diferentes combinaciones de
variables de entrada. Las tendencias representadas son comunes al resto de los casos especificos no abordados.

Una primera aproximacion a lo obtenido a través de las simulaciones de Monte Carlo se observa en la
figura 2, que incluye los factores T producidos por diferentes probabilidades de falsa alarma (Pf), operando con
un CA-CFAR de 64 celdas. Como puede apreciarse, a medida que se disminuye la Pr aumenta la T, siendo mas
notable la diferencia para la regién de los valores inferiores de . Este hecho se debe a la propia relacién entre g
y T. Los factores de ajuste muestran poca variacion para cifras elevadas del parametro de forma, donde ocurre
un efecto de “saturacion” del ritmo de cambio. Lo aqui mostrado coincide con el efecto que producen las
distribuciones Weibull y K tratadas en [23, 25].
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Fig. 2. Relacién entre el pardmetro de forma Log-Weibull y el factor de ajuste CA-CFAR para varias
probabilidades de falsa alarma

Por otra parte, la consecuencia de aumentar la cantidad de muestras en la ventana deslizante (N) se ilustra
en la figura 3, la cual grafica la respuesta obtenida por un SO-CFAR con P; de disefio igual a 10~*. La relacion es
también inversamente proporcional: dimensiones superiores de la ventana provocan factores inferiores. La
explicacion se encuentra en el hecho de que al emplear una menor cantidad de celdas para estimar el promedio
del fondo, un procesador CFAR realizard un célculo impreciso de la media del clutter. Asi, seran frecuentes las
sobreestimaciones que requerirdn de un factor elevado para asegurar la mantencion de la probabilidad de falsa
alarma de disefio.

También la eleccién de la variante CFAR a aplicar influye en el valor 6ptimo de T, segun lo mostrado en la
figura 4, que fue elaborada con los datos correspondientes a N = 8 y P, = 1073, El SO-CFAR es quien exhibe las
cifras superiores, dado que su mecanismo de seleccién de la subventana de menor promedio produce sub-
estimaciones de la media del clutter que precisan de mayores Ts. Por su parte, el OS-CFAR sostiene valores de
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ajuste muy reducidos en comparacion al resto, debido a que el proceso de estadistica ordenada devuelve
estimaciones muy variables de la media. Por dltimo, las respuestas del CA-CFAR y el GO-CFAR mostraron
comportamientos bastante similares.
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Fig. 3. Relacién entre el pardmetro de forma Log-Weibull y el factor de ajuste SO-CFAR para cantidades
variables de celdas en la ventana deslizante
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Fig. 4. Relacién entre el parametro de forma Log-Weibull y el factor de ajuste de multiples procesadores

Como resumen de este acapite, se demuestra que cada una de las variables consideradas tiene un aporte en
la seleccion de T. A medida que aumentan N, P; o 8 la T sera menor, aunque con ritmos de cambio diferentes.
Por otra parte, el empleo del procesador SO-CFAR maximiza la respuesta, mientras que el OS-CFAR la minimiza.

Generalizacion con Redes Neuronales

Una vez concluidas las simulaciones, se requeria de un mecanismo para sintetizar los resultados en un solo
ente que permitiera su aplicacién directa en la practica. El uso de una tabla de basqueda (look-up table) es una
alternativa realizable; sin embargo, retrasa la velocidad de ejecuciéon como consecuencia de la bisqueda que es
necesario realizar entre todos los elementos listados. Ademas, los valores de g distintos de las 30 realizaciones
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utilizadas en los experimentos deben ser aproximados por su homélogo discreto mas cercano, lo cual acarrea
imprecisiones en la estabilidad de los sistemas que presentaran saltos bruscos en su flujo de operacion.

En los estudios de [22, 23] se utilizaron ajustes de curva y superficie del tipo racional y de potencia con buenos
resultados. No obstante, en la investigacion actual se encontrd que el ajuste podia mejorarse empleando redes
neuronales. Este tipo de aproximador por inteligencia artificial es capaz de imitar diversos comportamientos,
evitando la rigidez de las expresiones matematicas cuya capacidad de adaptacién es limitada.
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Fig. 5. Cercania de la respuesta de lared neuronal y los valores T obtenidos de las simulaciones

La figura 5 compara la respuesta de una red neuronal con 30 valores de T producidos con un GO-CFAR de
ocho celdas en la ventana deslizante y probabilidad de falsa alarma de disefio de 10~2. Nétese como la red logra
permanecer cercana a la respuesta deseada para todo el rango del parametro de forma, manteniendo una
interpolacién suave entre los distintos valores de T.

En total, fueron entrenadas cuatro redes neuronales, donde cada una se correspondia con uno de los
procesadores CFAR. Las diferencias entre la respuesta del aproximador inteligente y el valor T extraido de las
simulaciones de Monte Carlo se muestra en la tabla 2. Se cuantificaron los errores promedios y porcentuales,
siendo este Ultimo un valor relativo que se calcula con respecto al rango de variacion de T de cada variante de
deteccion. El autor considera que se logré un ajuste de gran calidad dado que el error porcentual esta siempre
por debajo del 0,22 %.

Tabla 2. Errores promedio y porcentual de la aproximacion neuronal.

CA-CFAR OS-CFAR GO-CFAR SO-CFAR

Error Promedio 0,011 8 0,006 3 0,0108 0,017 3
Rango de Variacion 6,601 0 3,948 2 5,994 8 8,0550
Error Porcentual 0,178 8 % 0,159 6 % 0,1802 % 0,2148 %

Una vez entrenadas las redes neuronales, se sometieron los detectores CA-CFAR, OS-CFAR, GO-CFAR y
SO-CFAR a conjuntos de muestras Log-Weibull generadas en computadora con variaciones del pardmetro de
forma. Cuando no se aplicé la correccion del factor de ajuste por redes neuronales los resultados fueron muy
malos, observandose desviaciones superiores al 200 % con respecto a la Py de disefio. En cambio, al utilizar la

red neuronal como selector del factor de ajuste, la desviacion se redujo seguin se muestra en la figura 6.
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Para P, = 107 y P; = 10~ las diferencias entre el valor P obtenido y el de disefio fueron inferiores al 10 % en la
mayoria de los casos. Por su parte, la desviacion para P; = 10~* fue cercana al 24 %. El aumento del error es

producto de que las simulaciones de Monte Carlo incluyeron conjuntos invariables de un millén de muestras para
las tres P;s de disefio; cuando en realidad la poblacion de falsas alarmas es menor para P, = 10~*, donde ocurren

100 falsas alarmas por cada millén de muestras.
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Fig. 6. Desviacién Porcentual con Respecto a la Probabilidad de Falsa Alarma de Disefio obtenida
realizando la estimacion del factor de ajuste con redes neuronales

Como conclusién del acapite, se comprobd, mediante simulaciones computacionales, que los valores 6ptimos
T hallados permiten reducir la variacion en la probabilidad de falsa alarma de disefio a un 12 %, aun cuando se
procesan muestras con parametro de forma variable en el rango de valores posibles. El método de Monte Carlo
aplicado es efectivo en la obtencion de valores T 6ptimos; en este sentido, se recomienda mantener la poblacién
de falsas alarmas cercana a 1 000 si se desea que la desviacién sea de un 10 %.

VALORACION DEL ESTUDIO

La investigacion actual realizé simulaciones de Monte Carlo sobre 30 millones de muestras Log-Weibull
generadas en computadora, modificando sucesivamente cuatro variables: 1. el procesador a utilizar; 2. la
dimensién de la ventana deslizante; 3 la probabilidad de falsa alarma de disefio; 4. el parametro de forma de la
distribucion del clutter. Como resultado se obtuvieron una gran cantidad de valores 6ptimos del factor de ajuste
gue deben aplicarse en cada una de las combinaciones de variables de operacion abordadas. Para generalizar
este comportamiento, se entrenaron cuatro redes neuronales que reproducen la respuesta mas alla de los valores
discretos obtenidos en las simulaciones.

Este desarrollo permitié obtener un sistema que estima los factores de ajuste 6ptimos CA-CFAR, OS-CFAR,
GO-CFAR y SO-CFAR a ser aplicados para garantizar que la probabilidad de falsa alarma operacional
permanezca cercana a la de disefio. Una propuesta similar habia sido presentada con anterioridad para la
distribucion Log-Normal [19], sefialdndose la necesidad de realizar simulaciones computacionales para cada
nueva realizacion del factor de ajuste. Sin embargo, la propuesta aqui defendida constituye un paso de avance
pues utiliza un método costoso computacionalmente (simulaciones de Monte Carlo) para obtener una gran
cantidad de datos; estos son entonces generalizados por una red neuronal que realiza una estimacion muy rapida,
lo que permite prescindir de cualquier tipo de simulacién computacional que retrase la ejecucion.

La solucion actual da continuacion a lo publicado previamente en [22] por el autor para las distribuciones
Weibull, Log-Normal y K. Ahora se logré un mejor ajuste a los datos gracias al empleo de redes neuronales, en
contraposicion al ajuste racional aplicado en [22]. Las redes neuronales demostraron ser mas adaptables a
diversas respuestas, gracias a que no estan sujetas a las restricciones de la definicion matematica rigida de los
ajustes numéricos como el racional. Por otra parte, aunque el estudio de [23] logra una precision mejor que la
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aqui presentada aplicando ajustes numéricos, la calidad del resultado se sustenta en un ndmero limitado de
variables, que no incluyeron variaciones en el tamafio de la ventana deslizante, o mdltiples probabilidades de
falsa alarma en un mismo estimador.

El uso de los factores 6ptimos aqui encontrados mejorara la estabilidad en la probabilidad de falsa alarma de
los detectores frente a cambios estadisticos en la sefial de clutter terrestre, marino y atmosférico. La mejoria se
reflejara en una pantalla de radar mas clara y menos propensa a alterar su funcionamiento ante el cambio de la
zona de exploracién. La solucion propuesta es ideal para aplicarse en radares costeros fijos o situados sobre
embarcaciones explorando las costas cubanas. Ellos pueden encontrar alternancia entre altas y bajas
profundidades, manglares, aguas salobres, islotes, costas irregulares y vegetacion acuatica prominente,
condiciones que modifican el pardmetro de forma de la distribucion del fondo. Adicionalmente, la diversidad de
variables incluidas en las simulaciones hace que puedan usarse los ajustes del factor CFAR aun cuando se
cambia el procesador o la dimension de la ventana deslizante. Por tanto, la aplicacion de los resultados se
extiende a variantes de procesamiento que alternan el tipo de CFAR o la cantidad de celdas en la ventana como
respuesta a necesidades o condiciones variables [30-32].

La implementacion cabal del método presentado para la correccion del factor de ajuste requiere de una técnica
de estimacién del parametro de forma de la distribucién Log-Weibull, ya que las simulaciones ejecutadas
trabajaron bajo la suposicion de conocimiento a priori. En [33] se utiliz6 una aproximacion por maxima
verosimilitud para el computo de la B Log-Weibull. Sin embargo, el procedimiento descrito consiste en la
evaluacion iterativa de una expresion, lo cual retrasa el calculo. En radares es necesaria la operacion en tiempo
real para la correcta visualizacion de los blancos. Por tanto, se recomienda la busqueda de estimadores mas
rapidos. Una posible solucion puede alcanzarse con redes neuronales entrenadas a partir de histogramas de las
muestras, puesto que ya se han obtenido excelentes resultados para las distribuciones Weibull, K y
Pareto [34-36].

Una vez se disponga de la técnica de estimacion, se recomienda la implementacion de la solucion completa
en FPGA (Field Programmable Gate Array, Arreglo de Compuertas Programables). Las capacidades de
procesamiento paralelo de este sistema sacan el mejor partido de las redes neuronales que destacan también
por la ejecucién paralela simultanea de sus elementos internos.

CONCLUSIONES

Se comprobd, mediante simulaciones computacionales, que aplicando una red neuronal adjunta a un
procesador CFAR se logran minimizar los efectos perjudiciales introducidos por la variaciéon constante del
parametro de forma de la distribuciéon Log-Weibull del clutter. Especificamente, el sistema alcanza a mantener la
probabilidad de falsa alarma operacional con una desviacion promedio del 12 % con respecto al valor concebido
en el disefio, gracias a la seleccién constante del factor de ajuste 6ptimo. Los resultados son validos para los
procesadores CA-CFAR, OS-CFAR, GO-CFAR y SO-CFAR, ademas de para tres probabilidades de falsa alarma
de disefio y un intervalo del parametro de forma Log-Weibull que se corresponde con lo reportado para clutter
terrestre, marino y atmosférico.

La aplicacién fundamental del estudio esta en el disefio de nuevos detectores adaptados a escenarios
cambiantes, como los que aparecen en las costas cubanas, donde se modifica el pardmetro de forma del clutter
producto del cambio en las caracteristicas fisicas de la regién de exploracion. Conjuntamente, se viabiliza la
implementacién de variantes de deteccién que alternan entre varios procesadores y tamafos de ventana, en
respuesta al comportamiento del clutter.

Como futuras proyecciones, se prevé la codificacion de la solucion presentada en FPGA para su aplicacién
directa en ambientes operacionales. La construccién de un esquema funcional precisa también de un método
rapido de estimacion del parametro de forma Log-Weibull, de lo contrario el sistema no podria funcionar en tiempo
real.
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