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Resumen 
El clutter es una señal aleatoria interferente que usualmente se elimina con procesadores CFAR de 
ventana deslizante, para lograr una detección precisa de los blancos de radar. A pesar del éxito de la 
distribución Log-Weibull en la representación efectiva de varios tipos de clutter, no se ha estudiado la 
relación entre su parámetro de forma y el factor de ajuste óptimo de los procesadores. El artículo 
propone un sistema basado en redes neuronales que devuelve el factor de ajuste óptimo a aplicar para 
cualquier parámetro de forma Log-Weibull en el intervalo de valores posibles. Se comprobó mediante 
simulación computacional que, si se anexan las redes neuronales a los procesadores, se logra mantener 
la probabilidad de falsa alarma operacional muy cercana al valor concebido en el diseño, garantizándose 
así el cumplimiento del criterio de Neyman-Pearson. El desarrollo presentado tiene aplicación en la 
mejoría de la detección en las costas cubanas, donde aparecen escenarios heterogéneos que incluyen 
alternancia entre altas y bajas profundidades, manglares, aguas salobres, islotes y vegetación acuática 
prominente. Estos fenómenos afectan el comportamiento del clutter provocando fluctuaciones del 
parámetro de forma de la distribución del fondo.   
 
Palabras claves: clutter de radar, distribución Log-Weibull, procesadores CFAR, criterio Neyman-
Pearson, probabilidad de falsa alarma 

  

 
Abstract 
The clutter is a random interfering signal that is commonly canceled with sliding window CFAR 
processors, for achieving an accurate detection of radar targets. Despite the success of the Log-Weibull 
distribution in the effective representation of several types of clutter, the relationship between its shape 
parameter and the optimal scale factor of the processors have not been studied. The paper proposes a 
system based on neural networks for computing the optimal scale factor to be applied for any Log-Weibull 
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shape parameter in the range of possible values. It was verified through computer simulation that, if the 
neural networks are attached to the processors, the operational false alarm probability remains close to 
the value conceived in the design, satisfying thus the Neyman-Pearson criterion. The application of the 
presented technique lies in the improvement of the detection in Cuban coastal regions, where 
heterogeneous scenarios are found containing different depth levels, mangrove swamps, brackish water, 
islets and prominent aquatic vegetation. These scenarios disturb the clutter behavior provoking 
fluctuations in the shape parameter of the background. 

 
Key words: radar clutter, Log-Weibull distribution, CFAR processors, Neyman-Pearson criterion, false 
alarm probability.  
 

 

INTRODUCCIÓN 
El clutter es una señal aleatoria interferente que aparece en las mediciones de radar y que debe ser cancelada 

para lograr la detección precisa de los blancos. Cuando el haz de radar explora el medio circundante, además de 
reflejarse en los objetivos cercanos, produce ecos en otras superficies que no son de interés [1]. Así, se obtiene 
en el receptor una contribución indeseable que puede alcanzar niveles elevados y confundirse con los blancos. 
Cuando esta contribución proviene de la superficie del mar, se dice que se está en presencia de clutter marino. 
Otros tipos de clutter muy conocidos son el terrestre y el atmosférico [2]. 

Para el diseño de mecanismos efectivos de cancelación del clutter se hace necesaria su modelación 
estocástica. Las distribuciones Weibull [3], Log-normal [4], K [5] y Pareto [6] se utilizan en la actualidad con este 
propósito. Sin embargo, se han reportado varios casos donde la distribución Log-Weibull ha proporcionado un 
mejor ajuste que las anteriores para clutter terrestre [7-9], marino  [10-13] y atmosférico [14]. Aunque no se han 
presentado argumentos válidos en su contra, la comunidad de radares aún no ha adoptado esta distribución, por 
lo que su presencia en la literatura es aún reducida en relación a los desarrollos existentes para Weibull, Log-
Normal, K y Pareto. La distribución Log-Weibull, al igual que sus contrapartes, cuenta con un parámetro de escala 
y uno de forma, siendo el último quien influye sobre la detección. 

La detección de los objetivos de radar, y su discriminación del clutter, se realiza típicamente a través de 
procesadores CFAR (Constant False Alarm Rate, Razón de Falsa Alarma Constante) de ventana deslizante [15]. 
Entre ellos, las alternativas CA-CFAR (Cell Averaging-CFAR, CFAR de Promediación de Celdas), GO-CFAR 
(Greater of-CFAR, CFAR de Selección Superior), SO-CFAR (Smaller Of-CFAR, CFAR de Selección Inferior) y 
OS-CFAR (Ordered Statistics-CFAR, CFAR de Estadística Ordenada) son las más aplicadas [16]. Estas cuentan 
con un factor de ajuste, o factor de escala, que permite adaptar el sistema a las condiciones del clutter y que 
suele mantenerse fijo en correspondencia con el comportamiento promedio del fondo. 

Sin embargo, si el parámetro de forma del clutter varía en un amplio rango, el establecimiento de un factor de 

ajuste fijo provocará que la probabilidad de falsa alarma (𝑃𝑓) operacional experimente una varianza 

excesivamente alta alrededor del valor concebido en el diseño [17]. Esto es un problema grave desde la 
perspectiva teórica pues se deja de cumplir el criterio de Neyman-Pearson y se pierde la propiedad CFAR. Desde 
el punto de vista práctico, la consecuencia es que ocurrirán ráfagas de falsas alarmas y de pérdidas de blancos 
en la pantalla del radar, que reducirán las capacidades de vigilancia de los dispositivos que dejarán de ser 
invariantes en el tiempo. 

En los estudios que relacionan a la distribución Log-Weibull con el clutter se ha encontrado un amplio rango 
de variación del parámetro de forma [7, 9-14, 18, 19], lo que coincide a lo hallado para otros modelos. Esto 
significa que la problemática previamente descrita ocurre constantemente al explorar medios terrestres, marinos 
y atmosféricos si no se aplica la necesaria adaptación del factor de los procesadores. El problema se agrava 
cuando se opera en entornos heterogéneos como los de las costas cubanas donde se puede encontrar 
alternancia entre altas y bajas profundidades, manglares, aguas salobres, islotes, costas irregulares y vegetación 
acuática prominente, condiciones que alteran el comportamiento estadístico del eco. 

Como solución, el autor presenta una técnica basada en redes neuronales para la selección óptima del factor 
de ajuste del CA-CFAR, el GO-CFAR, el SO-CFAR y del OS-CFAR, a partir del conocimiento a priori del 
parámetro de forma de la distribución Log-Weibull asumida para el clutter. El entrenamiento del mecanismo 
neuronal se realizó a partir de resultados obtenidos de simulaciones de Monte Carlo realizadas sobre 30 millones 
de muestras Log-Weibull generadas en computadora. La prueba mediante simulación del método propuesto 
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demostró que se logra mantener una probabilidad de falsa alarma cercana al valor concebido en el diseño, con 
una precisión que supera lo logrado en trabajos previos para otras distribuciones. 

 
MATERIALES Y MÉTODOS 
Para La sección actual comienza con la introducción de la distribución Log-Weibull que es el modelo de clutter 

asumido para las simulaciones. Se abordan después los principios de operación de los cuatro procesadores 
utilizados. Seguidamente, se describe el algoritmo de simulaciones de Monte Carlo que produce el factor de ajuste 
apropiado para cada detector teniendo en cuenta las variaciones del parámetro de forma Log-Weibull, la 
dimensión de la ventana de deslizante y la probabilidad de falsa alarma de diseño. Por último, se presenta 
brevemente la estructura de la red neuronal utilizada para generalizar los resultados de las simulaciones de Monte 
Carlo a todo el rango posible de condiciones de operación. 
 

Distribución Log-Weibull 
La expresión de la PDF (Probability Density Function, Función de Densidad de Probabilidad)                              

Log-Weibull es [19]: 

𝑓𝑋(𝑥; 𝛼, 𝛽) =
𝛽

𝛼𝑥
(

ln 𝑥

𝛼
)

𝛽−1

𝑒𝑥𝑝 [− (
ln 𝑥

𝛼
)

𝛽

]      𝑥 > 1                                                          (1) 

Donde 𝑥 es la amplitud reflejada, 𝛼 es el parámetro de escala y 𝛽 es el de forma, que tiene una influencia 
marcada en la detección. En cambio, el parámetro de escala modifica la media de las muestras pero preserva la 
proporción entre ellas, por lo que no afecta el proceso de detección. 

La distribución Log-Weibull fue aplicada en la modelación del clutter marino spiky (con magnitudes elevadas 
frecuentes) por primera vez en [13], donde demostró su superioridad con respecto al modelo Log-Normal que es 
utilizado frecuentemente para ángulos rasantes muy bajos, polarización HH y alta resolución. Otras aplicaciones 
en clutter marino fueron presentadas en [10-12], reportándose también casos relacionados a clutter terrestre                     
[7-9] y atmosférico [14], donde se logra mejores ajustes que modelos de amplia adopción como la distribución K 
o la Weibull. 

El éxito de la distribución Log-Weibull está en el hecho de que su función de densidad de probabilidad se 
posiciona entre la Weibull y la Log-Normal. La Log-Normal suele producir estimaciones superiores a las reales 
sobre todo en la región de la cola, mientras que la Weibull tiende a cometer errores por defecto. En cambio, el 
modelo Log-Weibull tiene una cola larga y flexible en su forma [19]. 

El rango de interés de los valores posibles del parámetro de forma Log-Weibull se tomó de los estudios 
existentes. En [13] se encontró 5,29 ≤ 𝛽 ≤ 7,35, en [7] 7,76 ≤ 𝛽 ≤ 10,77, en [9] 𝛽 = 6,55, en [11] 17,72 ≤ 𝛽 ≤
20,99, en [12] 1,07 ≤ 𝛽 ≤ 7,82, en [18] 5,05 ≤ 𝛽 ≤ 20,68, en [10] 9,37 ≤ 𝛽 ≤ 10,76, en [19] 15,91 ≤ 𝛽 ≤ 16,44, y 

en [14] 11,93 ≤ 𝛽 ≤ 16,4. Por tanto, se puede asegurar que el clutter distribuido Log-Weibull exhibe un parámetro 
de forma siempre dentro del rango 2,3 ≤ 𝛽 ≤ 21. 

 
Detectores CFAR de Ventana Deslizante 
Los detectores de ventana deslizante aplicados en radar buscan garantizar la propiedad CFAR que responde 

al criterio de Neyman-Pearson [20]. Este criterio plantea que la probabilidad de falsa alarma (𝑃𝑓) toma 

precedencia ante la probabilidad de detección, por lo que los procesadores buscarán principalmente garantizar 
que la 𝑃𝑓, se mantenga lo menos alejada posible del valor de diseño.  

Para lograr lo anterior, se han aplicado varias estrategias consistentes en la detección de los blancos por 
comparación con los valores de las celdas vecinas. La más ampliamente difundida se denomina CA-CFAR, o 
CFAR de promediación, ya que estima el promedio del fondo a partir del cálculo de la media aritmética de las 
celdas vecinas. 

Como se puede apreciar en la figura 1, el CA-CFAR calcula el promedio de las celdas vecinas 𝑋, ejecutando 

primero la sumatoria y luego dividiendo por el total de celdas (𝑁) que usualmente toma los valores de 8, 16, 32 o 
64. Luego, el promedio es multiplicado por el factor de ajuste (𝑇) para elevar el umbral que posteriormente será 

comparado con la magnitud de la celda bajo evaluación (𝑌), definiéndose así su pertenencia a la clase blanco. 
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Fig. 1. Diagrama en bloques de un detector CA-CFAR 
 

El punto clave del CA-CFAR, y del resto de las variantes aquí tratadas, es el factor 𝑇. A medida que la 𝑇 
aumenta será cada vez menos probable que una muestra de clutter sea equívocamente clasificada como blanco. 

Para cumplir con la propiedad CFAR se debe subir la 𝑇 lo suficiente como para que se cumpla un valor 

determinado de 𝑃𝑓. No obstante, la elevación excesiva perjudica innecesariamente a la probabilidad de detección. 

Entonces, el factor de ajuste óptimo es aquel que cumple con la 𝑃𝑓 de diseño pero no perjudica innecesariamente 

a la probabilidad de detección. 
Si bien realiza una estimación certera del promedio del fondo, el CA-CFAR presenta dificultades cuando 

aparecen heterogeneidades en el clutter. Por ejemplo, si varios blancos ocupan celdas consecutivas sus 
amplitudes provocarán que el promedio hallado en la ventana deslizante sea demasiado elevado. Como 
resultado, el blanco que ocupa la posición 𝑌 puede no ser detectado. Se dice entonces que ha ocurrido un 
enmascaramiento del objetivo. 

Para prevenir estas situaciones se ha propuesto la aplicación de las alternativas GO-CFAR, SO-CFAR y OS-
CFAR, siendo la última la más popular. Las dos primeras variantes comparan las mitades anteriores y posteriores 
de la ventana deslizante, y efectúan la estimación del promedio solamente con la mayor (GO) o la menor (SO), 
respectivamente. La diferencia principal es que la primera beneficia la probabilidad de falsa alarma y la segunda 
la probabilidad de detección. Por su parte, el OS-CFAR ordena las muestras en la ventana y elige como promedio 
a la que queda justamente en el centro. Así, aunque se perjudica la estimación precisa de la media del fondo, se 
evitan los enmascaramientos. Cada uno de los procesadores cuenta con su respectivo factor de ajuste que 
necesita ser reconfigurado para cumplir el criterio de Neyman-Pearson. 
 
Algoritmo de Búsqueda de los Factores de Ajuste Óptimos 

Para elegir el factor óptimo (𝑇) es necesario tener en cuenta el total de celdas en la ventana deslizante (𝑁), 

la probabilidad de falsa alarma de diseño (𝑃𝑓), la variante de procesamiento aplicada (CA, GO, SO ó OS), y el 

parámetro de forma del clutter que puede asumirse como distribuido Log-Weibull (𝛽). Por tanto, para calcular los 
valores óptimos hay que producir experimentos de Monte Carlo que incluyan todas estas variables. 

Los experimentos se realizaron tomando como base 30 millones de muestras Log-Weibull que fueron 
generadas utilizando la técnica de inversión de la función de distribución acumulada [21]. Cada millón de muestras 
fue creado con un valor diferente del parámetro de forma, cubriendo el intervalo previamente discutido de 2,3 ≤
𝛽 ≤ 21. Los primeros 20 valores de 𝛽 se escogieron con una separación uniforme dentro del rango conocido. 
Entonces, se adicionaron otros diez valores en la región donde se comprobó que existía una variación más notable 
del comportamiento. 

Las probabilidades de diseño seleccionadas fueron 𝑃𝑓 = 10−2, 𝑃𝑓 = 10−3 y 𝑃𝑓 = 10−4 que coinciden con las 

empleadas para otras distribuciones en estudios similares [22-25]. Estas probabilidades son útiles en aplicaciones 
de radar como la detección de blancos móviles. 
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El procedimiento de obtención de los valores 𝑇 óptimos siguió una forma iterativa. En la primera iteración se 
tomó un millón de muestras y se procesó con un detector, por ejemplo el CA-CFAR, y una 𝑇 de 0,1 que es un 
valor muy bajo. Como todas las muestras eran de clutter, cada detección ocurrida se interpretó como una falsa 
alarma. Por tanto, se midió la probabilidad de falsa alarma dividiendo la cantidad de detecciones erróneas entre 
el total de muestras. 

Como era de esperar, se obtuvo una 𝑃𝑓 muy alta dada la pequeña 𝑇 elegida. La iteración siguiente repitió el 

procesamiento tras aumentar 𝑇, con lo que se obtuvo una 𝑃𝑓 más baja. Así, se siguieron ejecutando iteraciones 

realizándose una búsqueda binaria donde se aumentó o redujo 𝑇 hasta encontrar el punto donde ocurrió una 𝑃𝑓 =

10−2 con un error inferior al 1 %. En este momento concluyó la primera corrida del algoritmo, que requirió de 
alrededor de 20 iteraciones, donde cada iteración tardó cerca de un minuto en una computadora personal Intel 
Core i5-4460 CPU (3,20 GHz) con 4 GBs de memoria RAM. 

La secuencia anterior fue repetida cambiando cada una de las variables. Primero se establecieron 𝑃𝑓 = 10−3 

y 𝑃𝑓 = 10−4 en reemplazo de la 𝑃𝑓 = 10−2 original. Luego se cambió el tamaño de la ventana entre los valores de 

8, 16, 32 y 64. Después se modificó el procesador probando las cuatro alternativas más utilizadas (CA, GO, SO 
y OS). Por último, tras terminar con el primer millón de muestras se repitió la secuencia con el millón siguiente 
hasta completar los 30 millones. Como resultado del algoritmo de búsqueda, se obtuvieron 1 440 valores de 𝑇 
que caracterizan el comportamiento para un gran número de ocurrencias de las variables tratadas. 

 
Red Neuronal para Reproducir Resultados 

Las 1 440 𝑇𝑠 extraídas de los experimentos pueden ser almacenadas en tablas para su posterior aplicación 
en ambientes operacionales. Sin embargo, esto traería dos problemas: (1) el tiempo de búsqueda en la tabla 
puede retrasar la operación del detector, y (2) los valores intermedios no tabulados de 𝛽 tendrían que ser 
aproximados por algunos de los 30 incluidos en los experimentos. 

Para evitar estos inconvenientes, se entrenaron cuatro redes neuronales para que devolvieran el valor de 𝑇 a 
aplicar ante cualquier ocurrencia de 𝛽 y el resto de las variables de operación. Cada red correspondió a uno de 
los cuatro detectores en cuestión. Nótese que en realidad no es necesaria la obtención de valores intermedios 
para 𝑃𝑓 o 𝑁, que siempre tomarán alguno de los valores discretos tabulados. 

La red neuronal entrenada tiene las características mostradas en la tabla 1, que fueron tomadas de lo aplicado 
en investigaciones relacionadas [26-28]. Para el mejor entendimiento del significado de estos parámetros el lector 
es referido a literatura especializada [29]. 

 
 

Tabla 1. Configuración de las variables internas de la red neuronal 

Variables de la Red Selección 

Tipo de Red Red Alimentada hacia Adelante (Perceptrón Multicapa) 

Función de Entrenamiento BackPropagation (Levenberg-Marquardt) 

Número de Capas 3 (Capa de Entrada – Capa Oculta– Capa de Salida) 

Función de Transferencia o 
Activación 

Tangente Hiperbólica Sigmoide (Capa Oculta), Función de 
Transferencia Lineal (Capa de Salida) 

Medición del Error Error Medio Cuadrático 

División del Conjunto de 
Entrenamiento 

70 % Entrenamiento – 15 % Validación -  15 % Prueba 

Presentación de las Muestras Entrenamiento por Lotes 
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RESULTADOS Y DISCUSIÓN 
La presente sección está dedicada a ofrecer al lector los resultados obtenidos de las simulaciones, así como 

un análisis de los mismos. Para ello se divide la sección en dos acápites. El primero analiza la influencia de las 
variables de la simulación sobre el valor del factor de ajuste obtenido; mientras que el segundo discute la 
generalización de los resultados lograda a través de redes neuronales. 

 
Influencia de las variables sobre el factor de ajuste 
Para estudiar la influencia de las distintas variables sobre los resultados se divide el análisis en varias gráficas 

que reducen la dimensión de la salida. Las curvas que se muestran en las figuras 2, 3 y 4 presentan la relación 
entre el parámetro de forma Log-Weibull y el factor de ajuste del detector para diferentes combinaciones de 
variables de entrada. Las tendencias representadas son comunes al resto de los casos específicos no abordados. 

Una primera aproximación a lo obtenido a través de las simulaciones de Monte Carlo se observa en la                     

figura 2, que incluye los factores 𝑇 producidos por diferentes probabilidades de falsa alarma (𝑃𝑓), operando con 

un CA-CFAR de 64 celdas. Como puede apreciarse, a medida que se disminuye la 𝑃𝑓 aumenta la 𝑇, siendo más 

notable la diferencia para la región de los valores inferiores de 𝛽. Este hecho se debe a la propia relación entre 𝛽 

y 𝑇. Los factores de ajuste muestran poca variación para cifras elevadas del parámetro de forma, donde ocurre 
un efecto de “saturación” del ritmo de cambio. Lo aquí mostrado coincide con el efecto que producen las 
distribuciones Weibull y K tratadas en [23, 25]. 
 

 

Fig. 2. Relación entre el parámetro de forma Log-Weibull y el factor de ajuste CA-CFAR para varias 
probabilidades de falsa alarma 

 
Por otra parte, la consecuencia de aumentar la cantidad de muestras en la ventana deslizante (𝑁) se ilustra 

en la figura 3, la cual grafica la respuesta obtenida por un SO-CFAR con 𝑃𝑓 de diseño igual a 10−4. La relación es 

también inversamente proporcional: dimensiones superiores de la ventana provocan factores inferiores. La 
explicación se encuentra en el hecho de que al emplear una menor cantidad de celdas para estimar el promedio 
del fondo, un procesador CFAR realizará un cálculo impreciso de la media del clutter. Así, serán frecuentes las 
sobreestimaciones que requerirán de un factor elevado para asegurar la mantención de la probabilidad de falsa 
alarma de diseño. 

También la elección de la variante CFAR a aplicar influye en el valor óptimo de 𝑇, según lo mostrado en la 

figura 4, que fue elaborada con los datos correspondientes a 𝑁 = 8 y 𝑃𝑓 = 10−3. El SO-CFAR es quien exhibe las 

cifras superiores, dado que su mecanismo de selección de la subventana de menor promedio produce sub-
estimaciones de la media del clutter que precisan de mayores 𝑇𝑠. Por su parte, el OS-CFAR sostiene valores de 
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ajuste muy reducidos en comparación al resto, debido a que el proceso de estadística ordenada devuelve 
estimaciones muy variables de la media. Por último, las respuestas del CA-CFAR y el GO-CFAR mostraron 
comportamientos bastante similares. 
 

 

Fig. 3. Relación entre el parámetro de forma Log-Weibull y el factor de ajuste SO-CFAR para cantidades 
variables de celdas en la ventana deslizante 

 
 

 

Fig. 4. Relación entre el parámetro de forma Log-Weibull y el factor de ajuste de múltiples procesadores 

 
Como resumen de este acápite, se demuestra que cada una de las variables consideradas tiene un aporte en 

la selección de 𝑇. A medida que aumentan 𝑁, 𝑃𝑓 o 𝛽 la 𝑇 será menor, aunque con ritmos de cambio diferentes. 

Por otra parte, el empleo del procesador SO-CFAR maximiza la respuesta, mientras que el OS-CFAR la minimiza.  
 
Generalización con Redes Neuronales 
Una vez concluidas las simulaciones, se requería de un mecanismo para sintetizar los resultados en un solo 

ente que permitiera su aplicación directa en la práctica. El uso de una tabla de búsqueda ( look-up table) es una 
alternativa realizable; sin embargo, retrasa la velocidad de ejecución como consecuencia de la búsqueda que es 
necesario realizar entre todos los elementos listados. Además, los valores de 𝛽 distintos de las 30 realizaciones 
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utilizadas en los experimentos deben ser aproximados por su homólogo discreto más cercano, lo cual acarrea 
imprecisiones en la estabilidad de los sistemas que presentarán saltos bruscos en su flujo de operación. 

En los estudios de [22, 23] se utilizaron ajustes de curva y superficie del tipo racional y de potencia con buenos 
resultados. No obstante, en la investigación actual se encontró que el ajuste podía mejorarse empleando redes 
neuronales. Este tipo de aproximador por inteligencia artificial es capaz de imitar diversos comportamientos, 
evitando la rigidez de las expresiones matemáticas cuya capacidad de adaptación es limitada. 
 

 

Fig. 5. Cercanía de la respuesta de la red neuronal y los valores 𝑻 obtenidos de las simulaciones 
 

La figura 5 compara la respuesta de una red neuronal con 30 valores de 𝑇 producidos con un GO-CFAR de 

ocho celdas en la ventana deslizante y probabilidad de falsa alarma de diseño de 10−2. Nótese como la red logra 
permanecer cercana a la respuesta deseada para todo el rango del parámetro de forma, manteniendo una 
interpolación suave entre los distintos valores de 𝑇.  

En total, fueron entrenadas cuatro redes neuronales, donde cada una se correspondía con uno de los 
procesadores CFAR. Las diferencias entre la respuesta del aproximador inteligente y el valor 𝑇 extraído de las 
simulaciones de Monte Carlo se muestra en la tabla 2. Se cuantificaron los errores promedios y porcentuales, 
siendo este último un valor relativo que se calcula con respecto al rango de variación de 𝑇 de cada variante de 
detección. El autor considera que se logró un ajuste de gran calidad dado que el error porcentual está siempre 
por debajo del 0,22 %. 
 

Tabla 2. Errores promedio y porcentual de la aproximación neuronal. 

 CA-CFAR OS-CFAR GO-CFAR SO-CFAR 

Error Promedio 0,011 8 0,006 3 0,010 8 0,017 3 

Rango de Variación 6,601 0 3,948 2 5,994 8 8,055 0 

Error Porcentual 0,178 8 % 0,159 6 % 0,180 2 % 0,214 8 % 

 
Una vez entrenadas las redes neuronales, se sometieron los detectores CA-CFAR, OS-CFAR, GO-CFAR y 

SO-CFAR a conjuntos de muestras Log-Weibull generadas en computadora con variaciones del parámetro de 
forma. Cuando no se aplicó la corrección del factor de ajuste por redes neuronales los resultados fueron muy 
malos, observándose desviaciones superiores al 200 % con respecto a la 𝑃𝑓 de diseño. En cambio, al utilizar la 

red neuronal como selector del factor de ajuste, la desviación se redujo según se muestra en la figura 6.  
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Para 𝑃𝑓 = 10−2 y 𝑃𝑓 = 10−3 las diferencias entre el valor 𝑃𝑓 obtenido y el de diseño fueron inferiores al 10 % en la 

mayoría de los casos. Por su parte, la desviación para 𝑃𝑓 = 10−4 fue cercana al 24 %. El aumento del error es 

producto de que las simulaciones de Monte Carlo incluyeron conjuntos invariables de un millón de muestras para 
las tres 𝑃𝑓𝑠 de diseño; cuando en realidad la población de falsas alarmas es menor para  𝑃𝑓 = 10−4, donde ocurren 

100 falsas alarmas por cada millón de muestras.  

 

Fig. 6. Desviación Porcentual con Respecto a la Probabilidad de Falsa Alarma de Diseño obtenida 
realizando la estimación del factor de ajuste con redes neuronales 

 
Como conclusión del acápite, se comprobó, mediante simulaciones computacionales, que los valores óptimos 

𝑇 hallados permiten reducir la variación en la probabilidad de falsa alarma de diseño a un 12 %, aun cuando se 
procesan muestras con parámetro de forma variable en el rango de valores posibles. El método de Monte Carlo 
aplicado es efectivo en la obtención de valores 𝑇 óptimos; en este sentido, se recomienda mantener la población 
de falsas alarmas cercana a 1 000 si se desea que la desviación sea de un 10 %. 
 

VALORACIÓN DEL ESTUDIO 
La investigación actual realizó simulaciones de Monte Carlo sobre 30 millones de muestras Log-Weibull 

generadas en computadora, modificando sucesivamente cuatro variables: 1. el procesador a utilizar; 2. la 
dimensión de la ventana deslizante; 3 la probabilidad de falsa alarma de diseño; 4. el parámetro de forma de la 
distribución del clutter. Como resultado se obtuvieron una gran cantidad de valores óptimos del factor de ajuste 
que deben aplicarse en cada una de las combinaciones de variables de operación abordadas. Para generalizar 
este comportamiento, se entrenaron cuatro redes neuronales que reproducen la respuesta más allá de los valores 
discretos obtenidos en las simulaciones. 

Este desarrollo permitió obtener un sistema que estima los factores de ajuste óptimos CA-CFAR, OS-CFAR, 
GO-CFAR y SO-CFAR a ser aplicados para garantizar que la probabilidad de falsa alarma operacional 
permanezca cercana a la de diseño. Una propuesta similar había sido presentada con anterioridad para la 
distribución Log-Normal [19], señalándose la necesidad de realizar simulaciones computacionales para cada 
nueva realización del factor de ajuste. Sin embargo, la propuesta aquí defendida constituye un paso de avance 
pues utiliza un método costoso computacionalmente (simulaciones de Monte Carlo) para obtener una gran 
cantidad de datos; estos son entonces generalizados por una red neuronal que realiza una estimación muy rápida, 
lo que permite prescindir de cualquier tipo de simulación computacional que retrase la ejecución. 

La solución actual da continuación a lo publicado previamente en [22] por el autor para las distribuciones 
Weibull, Log-Normal y K. Ahora se logró un mejor ajuste a los datos gracias al empleo de redes neuronales, en 
contraposición al ajuste racional aplicado en [22]. Las redes neuronales demostraron ser más adaptables a 
diversas respuestas, gracias a que no están sujetas a las restricciones de la definición matemática rígida de los 
ajustes numéricos como el racional. Por otra parte, aunque el estudio de [23] logra una precisión mejor que la 
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aquí presentada aplicando ajustes numéricos, la calidad del resultado se sustenta en un número limitado de 
variables, que no incluyeron variaciones en el tamaño de la ventana deslizante, o múltiples probabilidades de 
falsa alarma en un mismo estimador.   

El uso de los factores óptimos aquí encontrados mejorará la estabilidad en la probabilidad de falsa alarma de 
los detectores frente a cambios estadísticos en la señal de clutter terrestre, marino y atmosférico. La mejoría se 
reflejará en una pantalla de radar más clara y menos propensa a alterar su funcionamiento ante el cambio de la 
zona de exploración. La solución propuesta es ideal para aplicarse en radares costeros fijos o situados sobre 
embarcaciones explorando las costas cubanas. Ellos pueden encontrar alternancia entre altas y bajas 
profundidades, manglares, aguas salobres, islotes, costas irregulares y vegetación acuática prominente, 
condiciones que modifican el parámetro de forma de la distribución del fondo. Adicionalmente, la diversidad de 
variables incluidas en las simulaciones hace que puedan usarse los ajustes del factor CFAR aun cuando se 
cambia el procesador o la dimensión de la ventana deslizante. Por tanto, la aplicación de los resultados se 
extiende a variantes de procesamiento que alternan el tipo de CFAR o la cantidad de celdas en la ventana como 
respuesta a necesidades o condiciones variables [30-32]. 

La implementación cabal del método presentado para la corrección del factor de ajuste requiere de una técnica 
de estimación del parámetro de forma de la distribución Log-Weibull, ya que las simulaciones ejecutadas 
trabajaron bajo la suposición de conocimiento a priori. En [33] se utilizó una aproximación por máxima 
verosimilitud para el cómputo de la 𝛽 Log-Weibull. Sin embargo, el procedimiento descrito consiste en la 
evaluación iterativa de una expresión, lo cual retrasa el cálculo. En radares es necesaria la operación en tiempo 
real para la correcta visualización de los blancos. Por tanto, se recomienda la búsqueda de estimadores más 
rápidos. Una posible solución puede alcanzarse con redes neuronales entrenadas a partir de histogramas de las 
muestras, puesto que ya se han obtenido excelentes resultados para las distribuciones Weibull, K y                            
Pareto [34-36]. 

Una vez se disponga de la técnica de estimación, se recomienda la implementación de la solución completa 
en FPGA (Field Programmable Gate Array, Arreglo de Compuertas Programables). Las capacidades de 
procesamiento paralelo de este sistema sacan el mejor partido de las redes neuronales que destacan también 
por la ejecución paralela simultánea de sus elementos internos.  

 
CONCLUSIONES 
Se comprobó, mediante simulaciones computacionales, que aplicando una red neuronal adjunta a un 

procesador CFAR se logran minimizar los efectos perjudiciales introducidos por la variación constante del 
parámetro de forma de la distribución Log-Weibull del clutter. Específicamente, el sistema alcanza a mantener la 
probabilidad de falsa alarma operacional con una desviación promedio del 12 % con respecto al valor concebido 
en el diseño, gracias a la selección constante del factor de ajuste óptimo. Los resultados son válidos para los 
procesadores CA-CFAR, OS-CFAR, GO-CFAR y SO-CFAR, además de para tres probabilidades de falsa alarma 
de diseño y un intervalo del parámetro de forma Log-Weibull que se corresponde con lo reportado para clutter 
terrestre, marino y atmosférico.  

La aplicación fundamental del estudio está en el diseño de nuevos detectores adaptados a escenarios 
cambiantes, como los que aparecen en las costas cubanas, donde se modifica el parámetro de forma del clutter 
producto del cambio en las características físicas de la región de exploración. Conjuntamente, se viabiliza la 
implementación de variantes de detección que alternan entre varios procesadores y tamaños de ventana, en 
respuesta al comportamiento del clutter. 

Como futuras proyecciones, se prevé la codificación de la solución presentada en FPGA para su aplicación 
directa en ambientes operacionales. La construcción de un esquema funcional precisa también de un método 
rápido de estimación del parámetro de forma Log-Weibull, de lo contrario el sistema no podría funcionar en tiempo 
real. 
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