
Vol. VII, No. 3, septiembre - diciembre, 2016, pp. 54 - 63

Revista Cubana de Ingeniería. Vol. VII, No. 3, septiembre - diciembre, 2016, pp. 54 - 63, ISSN 2223 -1781

Integración de motores de reglas
utilizando la programación orientada
a aspectos en el desarrollo
de aplicaciones en Java
Juan Carlos García González
correo electrónico: jcgarcia@ceis.cujae.edu.cu
Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae, La Habana, Cuba

Margarita André Ampuero
correo electrónico: mayi@ceis.cujae.edu.cu
Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae, La Habana, Cuba

Resumen
En varios enfoques de desarrollo de software la capa de lógica de negocio de las aplicaciones resulta ser
compleja, debido a que debe implementar las reglas de negocio existentes en una organización. En algunos
sistemas las reglas de negocio cambian con más frecuencia que otros elementos. El enfoque de reglas
de negocio propone una vía de desarrollo de aplicaciones donde las reglas de negocio juegan un papel
fundamental. Para implementar el enfoque de reglas se destacan dos vías fundamentales: el uso de motores
de reglas y la programación orientada a aspectos. Este trabajo propone la integración de ambas variantes,
buscando potenciar sus ventajas y minimizar las limitaciones. Con el propósito de validar la propuesta
se definen seis medidas y se presenta un ejemplo basado en una tienda virtual. Se implementan las tres
variantes en la solución del ejemplo, utilizando el motor de regla JBoss Rules, la herramienta AspectJ y la
integración de JBoss Rules con AspectJ. Al ejecutar las variantes, utilizando las medidas propuestas, se
demuestra que la integración resulta superior.

Palabras claves: enfoque basado en reglas de negocio, motores de reglas de negocio, programación orientada a
aspectos, JBoss Rules, AspectJ

Recibido: 24 de junio del 2016 Aprobado: 22 de septiembre del 2016

 Artículo Original

INTRODUCCIÓN
En la actualidad ha aumentado la demanda de

aplicaciones informáticas de corte empresarial. Las
aplicaciones empresariales suelen estar compuestas por
tres capas: presentación, lógica de negocio y persistencia
o acceso a datos. La capa de lógica de negocio es
encargada de implementar los principales procesos
de negocio de las organizaciones. A menudo estas
organizaciones están sujetas a numerosas reglas. Por lo
tanto, las reglas de negocio juegan un papel protagónico
como requisitos que debe cumplir la aplicación.

Una regla de negocio es una declaración que define
u obliga un cierto aspecto del negocio. Con estas se
pretende imponer la estructura del negocio o controlar su

comportamiento [1]. Una segunda definición propuesta
en [2] plantea que las reglas de negocio son definiciones
explícitas que regulan cómo opera y se estructura un
determinado negocio.

En varios enfoques de desarrollo de software las reglas
del negocio identificadas se implementan dentro de la
capa de lógica de negocio, en diferentes puntos del
código fuente. El hecho que las reglas estén distribuidas
por toda la capa de lógica de negocio implica dispersión
del código que implementa las reglas. Esta dispersión
dificulta el mantenimiento de las aplicaciones y afecta
su adaptabilidad ante los cambios en los requisitos del
negocio [3]. Para enfrentar esta situación se puede aplicar
el enfoque de reglas de negocio, el cual propone una

Ingeniería Informática

Juan Carlos García González - Margarita André Ampuero

Revista Cubana de Ingeniería. Vol. VII, No. 3, septiembre - diciembre, 2016, pp. 54 - 63, ISSN 2223 -1781 55

serie de fases y pasos a seguir con el objetivo de obtener
aplicaciones basadas en reglas en negocio [1] [2]. Estas
aplicaciones separan las reglas de negocio lógicamente,
y quizás físicamente, del núcleo funcional de lógica de
negocio de la aplicación, con el propósito de reducir los
tiempos de soporte y mantenimiento, así como obtener
aplicaciones más adaptables a los frecuentes cambios en
las reglas de negocio [4] [5].

El proceso de desarrollo de software propuesto por
varios enfoques normalmente está compuesto por una
serie, fases o etapas. En cada una de estas fases existe
un grupo de pasos que, por lo general, resultan comunes
entre los distintos enfoques existentes. En el enfoque
de reglas de negocio se proponen seis fases: Definir el
alcance del negocio, descubrimiento, análisis, diseño,
implementación y prueba [1]. Para implementar el enfoque
de reglas de negocio resulta factible utilizar tecnologías o
herramientas que posibiliten una implementación basada
en reglas de negocio. Actualmente, se destacan dos
variantes de implementación, el uso de motores de reglas
de negocio y el empleo de la programación orientada a
aspectos [3] [6] [7].

La primera variante tecnológica propone utilizar un
motor de reglas de negocio el cual se integra en la capa
de lógica de negocio de las aplicaciones. Un motor de
reglas es una aplicación que, a partir de una información
inicial y un conjunto de reglas definidas en un repositorio,
decide qué reglas deben aplicarse a una determinada
colección de información, ejecuta las reglas requeridas,
aplica y evalúa los cambios que esta ejecución tiene sobre
la información suministrada [8] [9] [10] .

En diferentes trabajos se ha analizado la factibilidad
de implementar el enfoque de reglas de negocio
utilizando motores de reglas. En [9] [11] se presenta
una solución utilizando un motor de reglas de negocio
para implementar el enfoque de reglas de negocio
en el desarrollo de aplicaciones sobre la plataforma
empresarial de Java. En [10] se realiza un análisis de
los resultados obtenidos al aplicar el enfoque de reglas
de negocio en aplicaciones desarrolladas siguiendo el
paradigma de arquitectura guiada por modelos. Por otro
lado, en [12] se presentan los resultados obtenidos en la
implementación de un sistema basado en reglas, para
la detención de fallos en transformadores eléctricos. Sin
embargo, en varios de estos trabajos se señala que al
integrar un motor de reglas de negocio en una aplicación,
aún persiste el inconveniente de que se genera un
fenómeno de código disperso y entremezclado en varios
puntos de la capa de lógica de negocio de la aplicación,
ya que si bien las reglas de negocio se encuentran
físicamente separadas del código de la funcionalidad
principal, el código necesario para acoplar el motor de
reglas y realizar la conexión de las mismas, se encuentra
disperso dentro de la aplicación [9].

La otra variante tecnológica que se destaca en la
implementación del enfoque de reglas de negocio consiste

en utilizar el paradigma de la programación orientada a
aspecto para extraer y encapsular las reglas de negocio
dentro de aspectos y así, separarlas del código fuente que
implementa la lógica de negocio en las aplicaciones. Un
aspecto actúa como conector entre la lógica de negocio de
la aplicación y la regla de negocio. La idea básica consiste
en que dentro de cada aspecto se implementen una o varias
reglas de negocio, buscando garantizar mantenibilidad y
reusabilidad [12] [13]. Esta variante ha sido aplicada en
diferentes trabajos [6] [10] [12] [14] [15] [16], los cuales
resaltan la disminución del código entremezclado como
el principal logro del empleo de AOP en la aplicación del
enfoque de reglas de negocio. Sin embargo, los autores
plantean que al desarrollar una aplicación utilizando AOP
puede existir un aumento en la complejidad tecnológica
ya que es preciso contar con el compilador del lenguaje
(por ejemplo, Java) con el que se implementa el núcleo
funcional de la aplicación y con el compilador del lenguaje
AOP específico que permite implementar las reglas dentro
de los aspectos (por ejemplo, AspectJ). Adicionalmente,
en estos trabajos se señala como principal limitante
que las reglas de negocio se implementan dentro de los
aspectos en código fuente. Esto implica que los cambios
en las reglas de negocio exigen la modificación del
código fuente, lo que conlleva a realizar tareas como son:
recompilar y desplegar la aplicación [16] [17].

Como se describe anteriormente, ambas variantes
tecnológicas presentan fortalezas y limitaciones; sin
embargo, en la bibliografía consultada no se han
identificado propuestas donde se integren ambas
variantes de implementación con vistas a potenciar sus
fortalezas y mitigar sus limitaciones. Por otro lado el
estudio realizado evidencia inexistencia de una propuesta
formal de pasos dirigidos a la fase de implementación
al aplicar el enfoque de reglas de negocio. También se
ha identificado como una deficiencia la carencia de
alguna propuesta de medidas que permitan evaluar las
variantes existentes para implementar el enfoque de
reglas de negocio. Es válido mencionar que este trabajo
se enfoca en soluciones basadas en Java, primeramente
por ser su carácter no propietario y también porque existe
un grupo de herramientas y tecnologías maduras que
permiten el desarrollo de aplicaciones empresariales
y la implementación del enfoque de reglas de negocio
basadas en este lenguaje [10].

A partir de lo expuesto anteriormente, en este trabajo se
define como objetivo, integrar motores de reglas mediante
la programación orientada a aspectos en la capa de
lógica de negocio para el desarrollo de aplicaciones en
Java, siguiendo el enfoque basado en reglas de negocio.
Para cumplir este objetivo se proponen los pasos a seguir
durante la fase de implementación del enfoque basado
en reglas utilizando una solución que integra las dos
variantes mencionadas. Además, se proponen medidas
para evaluar el comportamiento de la implementación
del enfoque de reglas utilizando las variantes existentes

Integración de motores de reglas utilizando la programación orientada a aspectos en el desarrollo...

Revista Cubana de Ingeniería. Vol. VII, No. 3, septiembre - diciembre, 2016, pp. 54 - 63, ISSN 2223 -178156

y la propuesta de integración de ambas. Se compara el
desempeño de las tres variantes evaluado las medidas
propuestas mediante el desarrollo de un ejemplo.

MATERIALES Y MÉTODOS
A continuación se fundamenta la selección del motor de

regla y la herramienta AOP basados en Java a utilizar en
la implementación del enfoque basado en reglas. Dado el
auge de las tecnologías de código abierto y el potencial
del lenguaje Java para el desarrollo de aplicaciones
empresariales, el estudio presentado en este trabajo se
centra en motores y herramientas AOP desarrollados
sobre el lenguaje Java.

Selección del motor de reglas a utilizar basado en
Java

Un paso importante al implementar el enfoque de reglas
de negocio empleando motores de reglas, es decidir qué
motor utilizar, de modo que se facilite su integración en las
aplicaciones desarrolladas.

Durante la última década se han desarrollado varios
motores de reglas. Algunos son herramientas comerciales
como: Blaze Advisor [9], LOG Rules [18], Oracle Rule
Engine [19] y otras son herramientas libres y de código
abierto como: Open Rules [20] y JBoss Rules [21].

A continuación se realiza un análisis comparativo de
tres motores de regla de código abierto desarrollados
sobre el estándar de Java JSR-94. Este estándar es una
especificación que define lineamientos y proporciona
una interfaz para programar aplicaciones común para la
implementación y ejecución de motores de reglas en Java
[4] [22]. Para realizar el análisis comparativo se definieron
seis criterios. Para ello se tomaron como base diversos
estudios donde se analizan diferentes implementaciones
de motores de reglas de negocio [10] [23] [24] [25]. Los
criterios empleados son:

1. Documentación disponible, elemento que resulta
muy útil para asimilar la tecnología y poder explotarla al
máximo.

2. Facilidad de integración con aplicaciones desarrolladas
en Java. Este criterio está determinado por el hecho de si
se sigue o no el estándar JSR-94.

3. Existencia de plugins que permitan la integración con
el ambiente de desarrollo integrado (IDE, por sus siglas
en inglés) Eclipse, hecho que facilita el desarrollo de
aplicaciones en Java.

4. El rendimiento del motor. Los motores de reglas por
sus características provocan un aumento en el consumo
de recursos lo que puede afectar el rendimiento de las
aplicaciones.

5. El mecanismo de inferencia que implementa. El
mecanismo de inferencia está determinado por un
algoritmo de emparejamiento que permite determinar las
reglas que se han cumplido sobre la base de una serie de
hechos.

6. Soporte de la herramienta, el cual está respaldado
por la comunidad de desarrolladores de la herramienta.
Para valorar este criterio se precisa la fecha en que se
liberó la última versión estable de la herramienta.

En la tabla 1 se resume el análisis de tres motores
de reglas, tomando en cuenta los criterios definidos
anteriormente.

De los motores analizados se selecciona JBoss Rules
o Drools como propuesta para implementar el enfoque de
reglas de negocio en el desarrollo de aplicaciones de Java.
Este motor de reglas de negocio posee un fuerte soporte
por la comunidad de desarrolladores, es de código abierto,
se integra fácilmente con aplicaciones en Java, posee
una amplia documentación y un mecanismo de inferencia
sólido, basado en una mejora realizada al algoritmo Rete
(utilizado en varios mecanismos de inferencia de sistemas
expertos). Incluso en el reporte de Forrester Research
[25] destacan sus fortalezas al compararlo con potentes
motores comerciales como ILOG Rules .

Selección de la herramienta de programación
orientada a aspectos a utilizar basada en Java

Para el estudio y selección de la herramienta a emplear
se utilizarán conceptos importantes del paradigma AOP
como son: puntos de unión, puntos de corte, aviso,
aspecto y el proceso de entretejido o recomposición de
aspectos [26]. En primer lugar se tuvo en cuenta la forma
en que se definen los aspectos, ya que esto facilita su
declaración. En Java existen tres formas principales de
declarar aspectos: por código, por anotaciones o mediante
ficheros XML. Como segundo criterio se evaluó el tipo de
mezcla o entretejido que implementa cada herramienta.
En tercer lugar se analizó el entorno de ejecución de
cada herramienta, prefiriendo utilizar herramientas que
sean independientes de la plataforma que les da soporte.
Por último, se analizó la cantidad de documentación
disponible para cada herramienta ya que constituye un
factor clave a la hora de asimilar y aplicar una tecnología.
Entre las herramientas basadas en Java se destacan tres,
las cuales son comparadas en la tabla 2.

Después del análisis comparativo se decide seleccionar
AspectJ basándose en las potencialidades que tiene para
el desarrollo sobre la plataforma Java. En la decisión se
tomó en cuenta la posibilidad que ofrece para chequear de
manera estática los aspectos declarados y la existencia
de un amplio modelo de puntos de unión, lo que facilita la
intercepción de los métodos de la lógica de negocio y por
último, la existencia de una amplia documentación, hecho
que favorece la curva de aprendizaje de la tecnología.
AspectJ es una extensión del lenguaje Java que permite
declarar los aspectos completamente a través de código y
anotaciones, lo cual evita redundancia en la definición de
tipos y reduce la ocurrencia de errores.

Juan Carlos García González - Margarita André Ampuero

Revista Cubana de Ingeniería. Vol. VII, No. 3, septiembre - diciembre, 2016, pp. 54 - 63, ISSN 2223 -1781 57

Tabla 1
Resumen del análisis de motores de reglas de negocio

Criterios Hammurapi Rules Open Rules JBoss Rules o Drools
Documentación disponible Pobre Media Amplia
Facilidad de integración con
aplicaciones Media Media Alta

Rendimiento Alto Alto Alto

Mecanismo de inferencia Hacia delante y detrás
No, es basado en
tablas de decisión
definidas en Excel

Hacia delante y
detrás basado en una
implementación mejorada
del algoritmo Rete OO

Integración con el IDE Eclipse

No se conoce que
disponga de plugins
para integrarlo con
Eclipse

Sí Sí

Soporte, última versión estable
de la herramienta 4.0 (noviembre 2008) 6.3.2 (diciembre 2014) 6.2 (febrero 2015)

Tabla 2.
Resumen del análisis de las principales herramientas AOP en Java
Criterio AspectJ JBoss AOP Spring AOP
Definición de aspectos por:
•	 Código x
•	 Anotaciones x x
•	 XML x x
Mezcla de aspectos:
•	 En tiempo de compilación x x
•	 En tiempo de carga x x
•	 En tiempo de ejecución x x x
Documentación Amplia Media Amplia

Entorno de ejecución Programa
plano en Java

Invocado y administrado
por la plataforma JBoss

Invocado y administrado
por la plataforma Spring

RESULTADOS
Como se mencionó anteriormente, en el enfoque de

reglas de negocio, se proponen seis fases a transitar para
desarrollar sistemas que basan su lógica de negocio en
reglas. En el enfoque, las cuatro primeras fases están
bien definidas y formalizadas. Ahora para la fase de
implementación, el enfoque carece de una propuesta
formal de pasos que permitan transitar por esta fase,
fundamentalmente porque esta fase está vinculada a la
selección tecnológica que se decida utilizar. A continuación
se expone uno de los principales resultados de este trabajo
que consiste en una propuesta de pasos a seguir en la
fase de implementación de enfoque de reglas de negocio.
Esta propuesta de nueve pasos está dirigida a la vía de
solución que combina un motor de reglas de negocio y la
programación orientada a aspectos.

1. Incluir en la aplicación un grupo de bibliotecas
necesarias para integrar el motor de reglas de negocio.

Algunos motores reglas de negocio permiten ser acoplados
directamente al código fuente de la aplicación. Para esto
se debe agregar a la aplicación un conjunto de bibliotecas
que especifican las clases y métodos para trabajar con el
motor de reglas seleccionado.

2. Crear una base de reglas. Esta base de reglas
también se conoce como repositorio de reglas. En
algunas herramientas o motores la base de reglas puede
ser un fichero texto, en otros casos, las reglas se pueden
almacenar en una base de datos y la herramienta se
encarga de la gestión de las reglas.

3. Incluir en la base de reglas las clases o paquetes de
clases que se van a utilizar para la definición de las reglas.

4. Definir las reglas en formato y lenguaje específico
para el motor de reglas que se esté utilizando.

5. Validar la sintaxis de las reglas contenidas en el
repositorio. En muchas herramientas este paso se realiza
de forma automática. Para el caso de los motores es en el
momento en que se cargan las reglas.

Integración de motores de reglas utilizando la programación orientada a aspectos en el desarrollo...

Revista Cubana de Ingeniería. Vol. VII, No. 3, septiembre - diciembre, 2016, pp. 54 - 63, ISSN 2223 -178158

6. Identificar los puntos de la lógica que van a ser
interceptados, por los aspectos que van a interactuar con
el motor de reglas de negocio. Se debe tener identificado
qué clases y métodos de la lógica de negocio van a ser
interceptados y qué reglas deben ser invocadas en cada
caso.

7. Definir puntos de corte y puntos de unión. El cómo se
interceptan los métodos de la lógica de negocio está dado
por el tipo de punto de corte a utilizar. Puede ser un punto
de corte que intercepta antes de entrar a la ejecución del
método (punto de corte conocido como before). Puede
ser un punto de corte de tipo after, que se ejecuta la
intercepción al concluir el método.

8. Definir qué información se pasará a las reglas. Al
utilizar AOP cuando un aspecto intercepta un método este
captura información que está en el contexto del método
en cuestión. Dicha información es pasada al aspecto,
dentro del cual puede ser modificada como resultado de
la ejecución de alguna regla de negocio y al finalizar la
ejecución del aspecto, la información debe regresar al
contexto del método con los cambios realizados.

9. Implementar dentro del aspecto la interacción con
el motor de reglas. Esto implica incorporar las líneas de
código necesarias para interactuar con el motor de reglas.

Los cinco primeros pasos son propios de la variante que
solo utiliza el motor de reglas de negocio. Los pasos del
seis al nueve son similares a la propuesta donde solo se
aplica AOP como variante de solución. La diferencia está
dada por la función de los aspectos. En el paso nueve
para la variante que solo usa AOP, los aspectos son los
responsables de implementar las reglas de negocio. En
esta nueva propuesta de integración, los aspectos se
encargan de implementar la comunicación entre el motor
de reglas y el núcleo de lógica de negocio. Es válido
mencionar que para obtener esta propuesta integradora
de nueve pasos, fue necesario previamente definir las
propuestas de pasos para la fase de implementación,
tanto para la vía que solo utiliza el motor de reglas, así
como para la vía que solo utiliza programación orientada
a aspectos.

La figura 1 ayuda a comprender cómo sería la
interacción entre el núcleo principal de lógica de
negocio de la aplicación y el motor de reglas mediante
los aspectos. Los aspectos mediante los puntos de
corte definidos, interceptan los métodos de la lógica de
negocio y capturan la información de la llamada a los
métodos. Esto se representa por las flechas etiquetadas
con 1. Dentro de los aspectos está la interacción con
el motor de reglas. La información que es capturada
por los aspectos se pasa al motor, esto se representa
por las flechas etiquetadas con 2. Sobre la base de
la información recibida, el motor evalúa las reglas y
ejecuta las que se cumplen. La información puede ser
modificada por la ejecución de las reglas. Seguido a
esto, la información regresa a los aspectos, lo cual se
representa con las flechas marcadas con 3. Finalmente,

la información es devuelta al contexto de la lógica de
negocio y la aplicación continúa su flujo de ejecución, esto
es representado mediante las flechas identificadas con 4.

A partir de la revisión bibliográfica realizada, se pudo
observar que solo en algunos trabajos que implementan
el enfoque de reglas de negocio se utilizan medidas para
valorar las ventajas que este ofrece. Estas medidas van
dirigidas fundamentalmente al análisis de la cantidad de
líneas de código y la mantenibilidad de cada solución. Por
otro lado, la norma ISO 9126 Parte 3 propone medidas que
permiten evaluar la calidad interna de un software. Para
evaluar la característica de calidad eficiencia se definen
varias medidas, las cuales son utilizadas para predecir la
eficiencia del comportamiento de un software. Asociado
a la eficiencia se define la medida comportamiento
del tiempo. Esta medida define atributos que permiten
predecir el comportamiento del tiempo de rendimiento
de una aplicación. Uno de los atributos es el tiempo de
respuesta, que se define como el tiempo estimado para
completar una tarea específica.

Fig. 1. Interacción entre la lógica de negocio y el motor de
reglas utilizando aspectos.

Otras medidas propuestas por la ISO 9126 permiten
evaluar la característica asociada a la facilidad de
mantenimiento o mantenibilidad de un software. Uno
de los atributos de esta medida es la capacidad de
cambios que puede presentar un software. Esta medida
está destinada a estimar el esfuerzo necesario cuando
se trata de implementar una modificación al software, o
sea, el esfuerzo ante un cambio. Basado en lo anterior
se propone tener en cuenta las siguientes medidas para
evaluar la solución propuesta y compararlas con las dos
variantes tecnológicas identificadas en la literatura. No se
utilizan estrictamente las medidas propuestas por la ISO
pues estas van dirigidas a productos de software en fase
final de desarrollo o en explotación.

- Rendimiento de la aplicación: El rendimiento de la
aplicación indica su comportamiento respecto el tiempo
de ejecución. Esta medida será expresada en segundos.

Para evaluar la facilidad de mantenimiento se propone
utilizar dos medidas:

- Tiempo para cambiar una regla. Los valores de esta
medida se propone que sean evaluados en segundos.

Juan Carlos García González - Margarita André Ampuero

Revista Cubana de Ingeniería. Vol. VII, No. 3, septiembre - diciembre, 2016, pp. 54 - 63, ISSN 2223 -1781 59

- Complejidad del cambio. Para evaluar esta medida
se propone contar la cantidad de operaciones necesarias
para modificar una regla de negocio.

Adicionalmente, se recomienda utilizar como medida:
- Cantidad de líneas de código. Esta medida es el

resultado de contar las líneas de código presentes en cada
clase necesaria para implementar las reglas de negocio.

Por otro lado, cuando se analizaron los motores de
reglas como vía para implementar el enfoque de reglas,
se identificó como deficiencia la generación de código de
dispersión y código entremezclado en la capa de lógica
de negocio. En la literatura revisada no se identificaron
propuestas para evaluar estos fenómenos. Ante esta
situación se proponen dos medidas para analizar cómo se
comportan estos fenómenos:

- Dispersión del código. Para esta medida se evalúa la
cantidad de veces que es necesario repetir en la lógica
de negocio las líneas de código necesarias para validar y
ejecutar reglas de negocio.

- Código entremezclado. Para esta medida se propone
contar la cantidad de líneas de código necesarias para
validar y ejecutar reglas de negocio que están mezcladas
con la lógica de negocio de la aplicación.

DISCUSIÓN
Para evaluar la propuesta de integración de motores de

reglas mediante programación orientada a aspectos en el
desarrollo de aplicaciones en Java siguiendo el enfoque
de reglas de negocio, se elabora un ejemplo basado en
una tienda virtual. En la tienda existen dos procesos de
negocio fundamentales, la compra y la devolución de
productos. Para estos procesos la tienda tiene definidas
seis reglas de negocio que se muestran en la tabla 3.

Para dar solución al caso de estudio se modelaron
e implementaron las siguientes clases en Java (ver
figura 2). Se debe destacar en este modelo las clases
OrdendeCompra y OrdendeDevolución en las cuales
están presenten los métodos CalcularDescuento y
CalcularImpuestoPorDevolucion donde es necesario
validar y ejecutar reglas de negocio.

Tabla 3
Reglas de negocio definidas para el ejemplo basado en la tiendaa virtual
Código de
la regla Descripción de la regla de negocio en lenguaje natural

RN1 Si es un cliente asociado a la tienda entonces el costo de envío es gratis

RN2 Si no es un cliente asociado a la tienda, el costo de envío es el 2 % del importe total de la compra

RN3 Si el importe total de la compra está entre $500 y $1 000 se debe aplicar un 5 % de descuento

RN4 Si el importe total de la compra es superior a $1 000 se debe aplicar un 10 % de descuento

RN5 Si la devolución tiene lugar en los primeros siete días posteriores a la compra, se le reintegra al
cliente el 90 % del importe total del precio original de los productos a devolver

RN6 Si la devolución tiene lugar entre 8 y 30 días posteriores a la compra, se le reintegra al cliente el
75 % del importe total del precio original de los productos a devolver

Como parte de la propuesta de solución un paso
importante es implementar las reglas de negocio que son
validadas y ejecutadas dentro del motor de reglas. Para
este caso se trata del motor JBoss Rules. A continuación
se muestra un fragmento del fichero online-shop.drl donde
está definida la base de reglas que utiliza el motor. Como
se observa en la figura 3, las reglas de negocio están
implementadas en una sintaxis que es interpretada por el
motor de reglas. Primeramente, se define el nombre de
la regla usando la palabra reservada rule. A continuación
aparece la palabra when que se utiliza para definir las
condiciones de las reglas y por último, la sentencia del
then, que define la acción que ejecuta la regla.

El otro paso importante dentro de la propuesta de
solución es la interacción con el motor de reglas. Esta
interacción consiste en cuatro pasos, primero se invoca
al motor de reglas, luego se crea la sesión de trabajo, se
insertan hechos a la sesión activa y se mandan a ejecutar
las reglas. Todo esto se corresponde con cuatro líneas
de código dentro del método ShopPointCut, el cual se
muestra en la figura 4.

Fig. 2. Modelo de clases del caso de estudio

Integración de motores de reglas utilizando la programación orientada a aspectos en el desarrollo...

Revista Cubana de Ingeniería. Vol. VII, No. 3, septiembre - diciembre, 2016, pp. 54 - 63, ISSN 2223 -178160

Tabla 4
Resumen del desempeño de las variantes para implementar el enfoque basado en reglas utilizando las medidas propuestas

 Medidas Característica /
Atributo

Variantes de solución

JBoss
Rules AspectJ

JBoss
Rules +
AspectJ

Tiempo de respuesta (s) Rendimiento 2 1 2
Número de líneas de código fuente para implementar reglas
de negocio Tamaño 10 32 22

Número de Operaciones necesarias para cambiar una
regla de negocio

Capacidad de
mantenimiento 3 6 3

Tiempo necesario para cambiar una regla de negocio (s) Capacidad de
mantenimiento <60 Entre 120

y 180 <60

Cantidad de veces que es necesario repetir en la lógica
de negocio las líneas de código necesarias para validar y
ejecutar reglas de negocio

Dispersión del
código 2 0 0

Cantidad de líneas de código necesarias para validar y
ejecutar reglas de negocio que están mezcladas con la
lógica de negocio de la aplicación

Código
entremezclado 8 0 0

Fig. 3. Fichero online-shop.drl con la definición de las reglas de
negocio.

Fig. 4. Código fuente de un aspecto encargado de interactuar con el motor de reglas.

Como se observa en la tabla anterior, al implementar la
primera y la tercera variante las medidas son similares,
tomando en consideración el rendimiento y la capacidad
de mantenimiento. En ambas variantes se logran mantener
las fortalezas al utilizar motores de reglas, asociada a la
capacidad de mantenimiento. Ello implica que utilizando la
solución propuesta se disminuye el tiempo y la cantidad de
operaciones necesarias para cambiar una regla, respecto
a utilizar la variante con AOP. Para ejecutar un cambio con
la primera y la tercera variante solo se debe modificar el
fichero de las reglas. Este es un fichero de texto y solo es
necesario abrirlo, localizar y modificar la regla, y salvar el
cambio. La próxima vez que el motor vuelva a cargar el
fichero ya la regla está actualizada. En cambio, al utilizar
la segunda variante se requiere abrir el código fuente con
la herramienta Eclipse, localizar el aspecto que contiene
la regla que se desea cambiar, modificar la regla, salvar el
cambio, recompilar y volver a ejecutar la aplicación.

Juan Carlos García González - Margarita André Ampuero

Revista Cubana de Ingeniería. Vol. VII, No. 3, septiembre - diciembre, 2016, pp. 54 - 63, ISSN 2223 -1781 61

Respecto a potenciar las ventajas que ofrece utilizar la
variante AOP, al integrarla con el motor se logra eliminar
el fenómeno de código disperso y entremezclado. O
sea, tanto al aplicar la segunda como la tercera variante
desaparece de la lógica de negocio el código responsable
de validar y ejecutar la reglas de negocio, ya que en la
segunda variante, el código se implementa en el cuerpo
de los aspectos y en la tercera, en el cuerpo del aspecto
se invoca al motor de reglas, quien se encarga de estas
tareas. Por lo tanto, ambas variantes superan a la primera.

Respecto al tamaño, o sea, la cantidad de líneas de
código para implementar reglas de negocio, se observa
cómo la variante que requiere menos líneas de código es la
que utiliza únicamente el motor de reglas y la solución que
requiere más líneas, resulta ser la que utiliza solo AspectJ.
Esto se debe a la cantidad de líneas de código que se
necesitan para implementar cada aspecto. Respecto a la
tercera variante, solución propuesta, el número de líneas
de código es superior a la primera variante. Esto pudiera
considerarse como una desventaja, pero no es así, ya
que la tercera variante al utilizar aspectos para integrar el
motor a la aplicación, reduce los efectos de dispersión de
código y código entremezclado que se produce cuando
hay que incorporar el motor de reglas directo al núcleo de
lógica de negocio de la aplicación.

Por lo explicado anteriormente, se puede concluir
que la solución propuesta resulta la variante de mejor
desempeño. Sin embargo, un aspecto a atender es el
rendimiento, ya que el tiempo de ejecución utilizando la
variante AOP fue ligeramente inferior que utilizando las
variantes que aplican motores de reglas.

CONCLUSIONES
Al culminar el trabajo se arriban a las siguientes
conclusiones:
- Para desarrollar aplicaciones empresariales utilizando el
enfoque de reglas de negocio se necesitan herramientas
o tecnologías que deben ser definidas en la fase de
diseño y después juegan un papel importante de la fase
de implementación.
- JBoss Rules se destaca como un potente motor de
reglas de negocios para implementar el enfoque de
estas en aplicaciones desarrolladas en Java, cumple con
la especiación JSR94 lo que facilita su integración en
aplicaciones y además posee una amplia documentación
y cuenta con un buen soporte por la comunidad de
desarrolladores.
- AspectJ se destaca entre las herramienta AOP para el
entorno Java, dado que cuenta con un amplio modelo
de puntos de unión, lo que facilita la intercepción de los
métodos de la lógica de negocio, así como a la existencia
de una amplia documentación.
- Se definieron los nueve pasos a seguir para implementar
el enfoque de reglas de negocio integrando el motor de
reglas de negocio JBoss Rules mediante el empleo de

la herramienta de programación orientada a aspectos
AspectJ para desarrollar una aplicación en Java.
- Se definen seis medidas para evaluar el desempeño
de las variantes que implementan el enfoque de reglas
de negocio: una para valorar el rendimiento, otra para
el tamaño, dos para la capacidad de mantenimiento
de las reglas, y dos para evaluar el código disperso y
entremezclado, respectivamente.
- Se comprobó que la solución propuesta constituye
la mejor variante de las evaluadas para implementar
el enfoque de reglas de negocio ya que combina las
potencialidades de las variantes que integra, aprovecha la
capacidad de mantenimiento que ofrece el empleo de los
motores de reglas y la fortaleza de AOP para eliminar el
código disperso y entremezclado.

Para trabajos futuros se propone: incorporar nuevas
medidas que ayuden a mejorar la evaluación del
desempeño de las variantes tecnológicas, implementar
el enfoque de reglas utilizando otras herramientas AOP
y otros motores de reglas, así como diseñar un caso
de estudio más complejo que incluya más reglas de
negocio para mejorar la comparación de las variantes de
implementación del enfoque basado en reglas.

REFERENCIAS
1. VON HALLE, B. Business Rules Applied-Building

Better Systems Using the Business Rules Approach.
USA: John Wiley & Sons, Inc, 2002.

2. ROSS, R. G. Business Rule Concepts-Getting to the
Point of Knowledge. USA: Business Rule Solutions Inc,
2005.

3. MESERVY, T. O.; ZHANG, Chen. et. al."The Business
Rules Approach and Its Effect on Software Testing".
IEEE COMPUTER SOCIETY. 2012, núm.4, vol. 29,
pp. 60-66.

4. PACHECO, Y.; ESTÉVEZ, S.; MARTÍNEZ, M. E.
"Integración de un sistema de gestión de reglas de
negocio al flujo de trabajo control de historias clínicas
para trasplante renal". Revista Cubana de Informática
Médica. 2015, núm. 1, vol. 7, pp. 105-112.

5. CHAWARE, S.; KARANDIKAR, A, "Development
of Loan Module using Business Rules Engine".
COMPUSOFT, An International Journal of Advanced
Computer Technology. 2014, núm. 7, vol. 3, pp. 1007-
1011.

6. CASAS, S.; MARCOS, C. et al. "Estrategias para la
Integración y Conexión de Reglas de Negocio con
Aspectos". XII Workshop de Investigadores en Ciencias
de la Computación, pp. 337-341, 2010.

7. GANG, Z.; TAO, G.; JIEJUN, L. "Implementation of
business rules approach in transformer fault detection
system". 7th International Conference on Computer
Science & Education (ICCSE), IEEE, vol. 12, pp. 135-
138, 2012.

8. CHAWARE, S.; KARANDIKAR, A. "A Review of Methods
for Developing Business Rules Engine" International

Integración de motores de reglas utilizando la programación orientada a aspectos en el desarrollo...

Revista Cubana de Ingeniería. Vol. VII, No. 3, septiembre - diciembre, 2016, pp. 54 - 63, ISSN 2223 -178162

Journal of Advanced Research in Computer and
Communication Engineering. 2014, núm. 3, vol. 3,
pp. 5878-5880.

9. GARCÍA, J. C.; ANDRÉ, M. "Implementación del
enfoque de reglas de negocio utilizando motores de
reglas en el desarrollo de aplicaciones Java." Ciencias
de la Información. 2015, vol. 46, núm. 1, pp. 41-46.

10. ALONSO, J. L. "Aplicación del Enfoque de Reglas de
Negocio sobre el paradigma MDA". Tesis de Maestría
en Informática Aplicada, Departamento de Ingeniería
de Software, Universidad Tecnológica de La Habana
José Antonio Echeverría, Cujae, Cuba, 2011.

11. GARCÍA, J. C. "Utilización de Motores de Reglas
de Negocio en Aplicaciones J2EE". Tesis de Grado,
Departamento de Ingeniería de Software, Universidad
Tecnológica de La Habana José Antonio Echeverría,
Cujae, Cuba, 2009.

12. KELLENS, A.; DE SCHUTTER, K. et al. "Experiences
in modularizing business rules into aspects". IEEE
International Conference on Software Maintenance,
ICSM. IEEE, vol. 8, pp. 448-451, 2008.

13. MUKUNDAN, A.; CHANG, L. "An Engine-Independent
Framework for Business Rules Development". 15th
IEEE International Enterprise Distributed Object
Computing Conference, IEEE, vol. 11, pp. 75-84, 2011.

14. CIBRÁN, M. A.; D’HONDT, M. "Composable and
Reusable Business Rules Using AspectJ" in Proceedings
of the Workshop on Software Engineering Properties
of Languages for Aspect Technologies (SPLAT) at the
International Conference on Aspect-Oriented Software
Development. Boston, USA, 2003.

15. SOUMEYA, D.; DJAMEL, M. "Quantitative and
qualitative evaluation of AspectJ, JBoss AOP and
CaesarJ, using Gang-of-Four design patterns".
International Journal of Software Engineering and Its
Applications. 2013, vol. 7, núm. 6, pp. 157-174.

16. BOGGIANO, M. B.; CASTRO, A. "SLD149 Validación
de la funcionalidad del traductor LPT-SQL para la base
de datos de trasplante renal". IX Congreso Internacional
Informática en Salud, La Habana, Cuba, 2013.

17. WU, B.; GUO, Z. "Research and Application of
Rule Engine in Scheduled Outage Management"
in Proceedings of 2nd International Conference on
Computer and Information Application (ICCIA 2012),
pp. 446-449, 2012.

18. IBM. Business Rules Management System (BRMS).
2015. Available: http://www-01.ibm.com/software/
websphere/products/business-rule-management/.

19. SILVERIA, L. "Diseño e implementación de un
motor de reglas dinámicas usando especificaciones
GeneXus". Tesis de Maestría, Facultad de Ingeniería,
Universidad de la República, Uruguay, 2010.

20. OPENRULES. Sitio Oficial de Open Rules. 2012.
Available: http://openrules.com/.

21. DROOLS. Reference Manual Drools 6.1. Available:
http://docs.jboss.org/drools/release/6.1.0.Final/drools-
docs/html_single/index.html. 2013.

22. DI, L.; TAO, G.; JIANG-PING, X. "Rule Engine based on
improvement rete algorithm" International Conference
on Apperceiving Computing and Intelligence Analysis
(ICACIA), vol. 10, pp. 346-349, 2010.

23. MARTÍNEZ, J. "Introduciendo Semántica en un
Proceso de Desarrollo de Software a través de
Reglas de Negocio". Tesis Doctoral, Departamento
de Ingeniería de Sistemas Telemáticos, Universidad
Politécnica de Madrid, España, 2010.

24. RIVILLAS, O. "Estado del arte de los motores de
reglas de negocio BRM". Tesis de Grado, Facultad
de Ingeniería, Universidad de San Buenaventura,
Colombia, 2012.

25. RYMER, J.; GUALTIERI, M. Market Overview:
Business Rules Platforms 2011. Forrester Research
Report.

26. HERNÁNDEZ, L. R. "Un modelo para la implementación
de la seguridad de una aplicación Web con el uso de la
Programación Orientada a Aspectos". Tesis de Maestría
en Informática Aplicada, Departamento de Ingeniería
de Software, Universidad Tecnológica de La Habana
José Antonio Echeverría, Cujae, Cuba, 2012.

AUTORES
Juan Carlos García González
Ingeniero Informático, Facultad de Ingeniería Informática,
Universidad Tecnológica de La Habana José Antonio
Echeverría, Cujae, Cuba

Margarita André Ampuero
Ingeniera Informática, Doctora en Ciencias Técnicas,
Profesora Titular, Facultad de Ingeniería Informática,
Universidad Tecnológica de La Habana José Antonio
Echeverría, Cujae, La Habana, Cuba

	

Juan Carlos García González - Margarita André Ampuero

Revista Cubana de Ingeniería. Vol. VII, No. 3, septiembre - diciembre, 2016, pp. 54 - 63, ISSN 2223 -1781 63

Rule Engines Integration Using Aspect Oriented
Programming in Java Applications Development

Abstract
In several approaches of software development, the business logic layer of the application tends to be
complex, because it must implement the existing business rules in an organization. In some systems
business rules change more frequently than other elements. The business rules approach proposes a
way of application development where business rules play a key role. To implement the business rules
approach two fundamental ways stand: rules engines and Aspect Oriented Programming. This paper pro-
poses the integration of these two variants of solution in order to maximize the benefits of both and mini-
mize limitations. In order to validate the proposal, six measures are defined. The measures are evaluated
using the rule engine JBoss Rules, the AspectJ tool and JBoss Rules integration with AspectJ. Finally,
through an example it is found that the integration of the two approaches is superior.

Key words: business rules approach, business rules engine, Aspect Oriented Programming, JBoss Rules,
AspectJ

