
Vol. VII, No. 2, mayo - agosto, 2016, pp. 48 - 54

Revista Cubana de Ingeniería. Vol. VII, No. 2, mayo - agosto, 2016, pp. 48 - 54, ISSN 2223 -1781

Ingeniería Informática

Generación automática de
combinaciones de valores para pruebas
funcionales utilizando metaheurísticas
Arloys Macías Rojas
correo electrónico: amacias@ceis.cujae.edu.cu
Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae, La Habana, Cuba

Martha Dunia Delgado Dapena
correo electrónico: marta@ceis.cujae.edu.cu
Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae, La Habana, Cuba

Jenny Fajardo Calderin
correo electrónico: jfajardo@ceis.cujae.edu.cu
Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae, La Habana, Cuba

Danay Larrosa Uribazo
correo electrónico: dlarrosau@ceis.cujae.edu.cu
Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae, La Habana, Cuba

Resumen
Diversos autores coinciden en la importancia de las pruebas como elemento de control de calidad del
software y en la imposibilidad de la realización de pruebas exhaustivas. Este criterio está sustentado en
que la cantidad de escenarios y valores de prueba necesarios para lograr cobertura total es grande, lo
que convierte el diseño de casos de prueba y en particular la generación de sus valores en un problema
combinatorio. Este trabajo presenta una propuesta para la generación automática de valores de casos
de prueba funcionales, mediante el uso de algoritmos metaheurísticos, maximizando la cobertura de los
escenarios. Además, se detallan los algoritmos implementados para la generación de valores iniciales y
para la generación de combinaciones. Adicionalmente se describen un conjunto de buenas prácticas para
utilizar el componente y la comparación de los resultados obtenidos con otras soluciones existentes.

Palabras claves: diseño de casos de pruebas, generación de valores de prueba, pruebas de software, pruebas
funcionales

Recibido: 24 de marzo del 2016 Aprobado: 14 de julio del 2015

 Artículo Original

INTRODUCCIÓN
Según [1] las pruebas son muy costosas por lo que

se dejan para las últimas etapas del proyecto y no se
realizan con la calidad necesaria. No obstante, existen
múltiples propuestas que se centran en la planificación
y cálculo de los medios indispensables para realizarlas
[2,3], así como a la generación automática de escenarios
[4] y valores de prueba [5]. Estas propuestas persiguen el
objetivo fundamental de disminuir los tiempos asociados
a este proceso; simplificar su ejecución por parte de
desarrolladores y probadores y alcanzar amplios grados

de cobertura disminuyendo el tiempo empleado para su
realización.

La generación automática de escenarios y valores de
prueba es un problema combinatorio, donde intervienen un
gran número de variables, por lo que dificulta su solución
si se aplican técnicas tradicionales, o si la cantidad de
combinaciones es tan grande e inmanejable que no se
puede decidir cuáles seleccionar. En [6-8] se exploran
algunas de las respuestas que brindan las temáticas de
la Ingeniería de Software Basada en Búsquedas para dar
solución a problemas combinatorios utilizando métodos
de optimización [5,9]. Además, existen trabajos recientes

Arloys Macías Rojas - Martha Dunia Delgado Dapena - Jenny Fajardo Calderín - Danay Larrosa Uribazo

Revista Cubana de Ingeniería. Vol. VII, No. 2, mayo - agostol, 2016, pp. 48 - 54, ISSN 2223 -1781 49

que automatizan la realización de las pruebas de software
con respecto a la generación de escenarios y valores
de prueba, utilizando técnicas para evadir la explosión
combinatoria [6,10-13] .

En [11,14] se describe el empleo de algoritmos de
búsqueda para la generación de casos de prueba para
programas orientados a objetos desarrollados en Java,
estas propuestas se centran en la generación de caminos
independientes, no así de los valores. En [15] se hace
un recorrido por las diversas técnicas de búsqueda que
se han aplicado para la generación de datos de prueba
estructural [16-20]. En [21] proponen un modelo puro
basado en el algoritmo Búsqueda Tabú para la generación
automática de valores para casos de prueba. Mientras que
en [22] se presenta un algoritmo memético que consiste
en la fusión de una metaheurística poblacional con una
lista Tabú, para gestionar el problema de la generación de
caminos para casos de prueba. En [9,11,23], se propone
la generación de casos de pruebas a través del empleo
de heurísticas y de técnicas de ingeniería de software
basadas en la búsqueda. Estas alternativas se centran
en el desarrollo de valores para alcanzar un nivel de
cobertura particular de los ambientes [24].

Los aportes fundamentales de las propuestas antes
mencionadas están dirigidos a la utilización de algoritmos
metaheurísticos y diversas modificaciones a estos
algoritmos, pero no tienen en cuenta la naturaleza propia
de los métodos de diseño de casos de prueba [25]. Los
métodos que provienen de la disciplina de Ingeniería de
Software se utilizan de forma empírica, pero no han sido
incorporados a estas propuestas, lo que hace que el rango
de valores que se utilizan como punto de partida para la
generación de valores de prueba siga siendo grande, y
por tanto el problema combinatorio continúa sin reducirse
significativamente. Estos métodos de diseño tradicionales
constituyen base conceptual del diseño de los casos
de prueba en la Ingeniería de Software y debieran
incorporarse a estas nuevas soluciones con el objetivo de
reducir las combinaciones de valores a generar logrando
cubrimientos similares de los escenarios de prueba.

Las propuestas existentes en generación de valores,
no utilizan el hecho de que varias combinaciones de
valores pueden abarcar el mismo escenario representado
y por tanto este elemento podría reducir el número de
combinaciones de valores, de forma tal, que se maximice
la cantidad de escenarios cubiertos.

En este trabajo se presenta una propuesta para la
generación de valores de pruebas funcionales, que genera
valores iniciales significativos a partir de la descripción
de dominio de cada variable y con ellos obtiene las
combinaciones de valores que garantizan determinados
niveles de cobertura de los escenarios para los casos de
pruebas funcionales.

MATERIALES Y MÉTODOS
La propuesta de generador de combinaciones de

valores para casos de pruebas funcionales contempla
un componente de generación y combinación de valores
de pruebas y su integración con otros componentes de
gestión automática de casos de pruebas, conformando el
CP con la información necesaria.

En la figura 1 se muestra el diagrama de actividades que
describe cómo se lleva a cabo el proceso de generación
y combinación de valores. El proceso comienza cuando
el cliente, que puede ser un analista, programador,
diseñador de pruebas u otro sistema, define el(los)
dominio(s) del(los) atributo(s) que quiere generar. Una
vez definidos los dominios, inicia la actividad “Generar
valores iniciales para cada atributo”, de esta actividad
se despliega una condicional que le permite al usuario
escoger entre dos acciones. Si el usuario desea generar
las combinaciones, el proceso se encamina hacia la otra
actividad principal del componente llamada “Combinar
valores de cada atributo”, esta actividad devuelve la lista
de combinaciones de valores que el usuario almacenará
posteriormente. Si el usuario no decide generar las
combinaciones, el componente solo devuelve los atributos
con sus valores y respectivos estados, para que el usuario
pueda almacenarlo para uso posterior.

Para generar los valores iniciales o valores significativos,
a partir de los cuales se generan posteriormente las
combinaciones, se hace necesario que el usuario defina
los dominios de cada atributo y con esta información y
haciendo uso de la técnica de diseño, partición equivalente
se obtienen los valores significativos para cada variable
que se suministra al proceso de combinación de valores.
A continuación se exponen los criterios considerados en
la generación de valores significativos y los algoritmos
utilizados.

Se define un algoritmo para la generación de valores
iniciales de prueba para cada tipo de atributo. Este
algoritmo tiene como base para la generación, la
producción de valores que lleven a encontrar la mayor
cantidad de no conformidades en la prueba de software.

Para asentar esta base, se hace uso de diferentes
criterios en cada tipo de dato, y a partir de estos criterios
se decide a qué clases de equivalencia pertenece cada
valor. Se definieron seis valores significativos para el
dominio númerico, hhgdfgdfhgdf

El componente desarrollado emplea para la obtención
de los valores necesarios para un CP dos algoritmos que
por su importancia en el proceso de generación serán
descritos con detalle a continuación:

El Algoritmo 1, es el encargado de generar los valores
iniciales para cada atributo, teniendo como entrada la
representación de su dominio, para ello se consideran los
criterios descritos. Este algoritmo discretiza los dominios,
de forma tal que los valores con los que comienza el
algoritmo de generación de combinaciones (Agoritmo 2),
reciba como entrada valores significativos para el proceso
de prueba, y no todos los valores del dominio.

Generación automática de combinaciones de valores ...

Revista Cubana de Ingeniería. Vol. VII, No. 2, mayo - agosto, 2016, pp. 48 - 54, ISSN 2223 -178150

 Algoritmo 1. Generación de valores de prueba para
un atributo

Sea α = ()X X Xn1, ,..., el vector que contiene las
variables o atributos de entrada a la funcionalidad que se
desea probar.

Entrada: β = ()y y yn1 2, ,..., el vector que contiene la
descripción del dominio de cada atributo perteneciente a
α .

Salida: ()tik λλλσ ,...,, 21=
 (vector que contiene los

valores iniciales para la generación de combinaciones).
1. Obtener vector ()keee ,...,, 21=ε que contiene criterios
para instanciar valores de casos de prueba para el tipo
de dato .
2.
3. Para cada ev , con kv ≤≤1

i)Obtener el valor iV , aplicando la trasformación
T e yiv v i,() correspondiente a ve para el atributo iE .

ii)Obtener el valor
iE que corresponde a la clase de

equivalencia de

iii)Obtener el valor iZ que corresponde a la
pertenencia de iV al dominio definido para el atributo.

iv)Construir la triada ordenada
v)Adicionar a iσ
vi)Incrementar v

El Algoritmo 2, es el encargado de generar todas
las combinaciones de valores de prueba para probar

una funcionalidad, teniendo en cuenta los valores de
cobertura especificados.
Algoritmo 2. Generación de combinaciones de
valores para un requisito funcional

Entrada: ()nXXX ,...,,1=α (vector que contiene los
atributos de los cuales se quieren combinar sus valores). 	
 φ σ σ σ= ()1 2, ,..., n (vector que contiene n vectores con los
valores iniciales de cada atributo

iσ de la funcionalidad
que se quiere probar, donde el vector iσ tiene la forma 	
 σ λ λ λi m= ()1 2, ,..., donde la longitud m del vector iσ puede
ser diferente para cada del vector)

Salida: lxnM (matriz que contiene las combinaciones de
valores generados).
1) Para cada atributo

()nXXX ,...,,1=α

 de ()nXXX ,...,,1=α :
i)Si no está generado.
a)Generar el vector ()ti λλλσ ,...,, 21= con los

valores iniciales del atributo utilizando el Algoritmo 1.
b) Adicionar ()ti λλλσ ,...,, 21= al vector ()nσσσφ ,...,, 21=

en la posición l .
ii) incrementar i.

2.Calcular cantidad total de iteraciones l a partir de la
cobertura C .
3.Calcular cantidad máxima de combinaciones de
clases de equivalencia ()()∏ =

n
ilongitud

1i
ε según se

indica en el modelo de optimización.
4. j=1
5. Para cada iteración.j < l

Fig. 1. Diagrama de actividades del componente de generación de valores de casos de prueba.

y1

v = 1

Vi

λv i i iV E Z= (), ,

λv

φφ

Arloys Macías Rojas - Martha Dunia Delgado Dapena - Jenny Fajardo Calderín - Danay Larrosa Uribazo

Revista Cubana de Ingeniería. Vol. VII, No. 2, mayo - agostol, 2016, pp. 48 - 54, ISSN 2223 -1781 51

i)Generar una combinación de valores γ ϕ ϕ ϕj n= ()1 2, ,...,
en la que cada elemento iϕ es un par ordenado
ϕi i iV E= (), donde

iV es el valor generado para el
atributo iE y

iE es el valor de la clase de equivalencia
correspondiente.

ii)Validar la combinación ()nj ϕϕϕγ ,...,, 21=
 , aplicando los

mecanismos de penalizacia según el modelo propuesto.
iii)Si la combinación jγ es válida

a)Calcular heurística fh jγ() según la ecuación presentada.

b)Si fh umbralj jγ γ() ≥ () entonces adicionar a lxnM
.

c)Si ≥j longitud i
n

ε()()=∏ i 1 recalcular el umbral con la
expresión presentada.

 iv)Incrementar j

El componente GeVaF, que implementa esta propuesta
ofrece una solución que resuelve la situación problemática
de tres formas distintas y de fácil empleo para el usuario
que la utilice.

La primera variante es utilizando este componente
en otra aplicación que capture los dominios de cada
atributo a través de una interfaz de usuario con el objetivo
de evitarles a los futuros interesados la obligación de
consumir un servicio. De esta forma se podrá obtener
las combinaciones de valores para casos de pruebas
funcionales ocultando tras la interfaz todo el procesamiento
de ficheros y variables correspondientes.

La segunda variante es utilizar el componente haciendo
uso de su capa de servicios para el consumo de los
usuarios con el principal objetivo de facilitar la integración
con cualquier tipo de aplicación que esta ofrece, ya sea
desktop o web.

Se decidió además darle solución a este problema
usando una variante de componente que permita tratarlo
como una biblioteca, para darle al usuario una forma de
solución arquitectónica distinta y poder ajustar la solución
a cualquier necesidad.

Los resultados de las combinaciones generadas se
almacenan en un fichero XML. En la figura 2 se muestra
un ejemplo de una combinación de los atributos “Usuario”
y “Contraseña”:

RESULTADOS Y DSICUSIÓN
Para validar el componente de generación de valores

de prueba GeVaF se realizaron varias ejecuciones con el
objetivo de comparar los resultados con otras propuestas
nacionales.

Se diseñó un experimento en el que se fija el número de
iteraciones ()l a partir del 100 % de cobertura (C) de los
valores iniciales iX . Para ejecutar el experimento se utilizó
como caso de estudio una aplicación real, con el objetivo
de verificar si se reduce la cantidad de combinaciones de
valores para casos de pruebas funcionales generadas
por GeVaF evidenciando que se cubra el 100 % de los
escenarios, con respecto a las combinaciones generadas
por el componente que solo utiliza metaheurísticas. En
este caso de estudio se diseñaron las pruebas para seis
de sus funcionalidades que, como promedio tienen tres
atributos por cada una de ellas.

Fig. 2. Resultado de una combinación de valores generada con GeVaF.

Generación automática de combinaciones de valores ...

Revista Cubana de Ingeniería. Vol. VII, No. 2, mayo - agosto, 2016, pp. 48 - 54, ISSN 2223 -178152

En la tabla 1 se muestra la información referente a los
casos de estudio, señalando para cada uno la cantidad
de variables, la cantidad de escenarios y la cantidad
máxima de combinaciones necesarias para cubrir los
escenarios correspondientes a cada funcionalidad a
probar, así como los resultados obtenidos con la ejecución
de la herramienta GeVaF, que utiliza metaheurísticas y la
técnica de partición equivalente de la disciplina Ingeniería
de Software y su comparación con un componente que
solo utiliza metaheurísticas. Para ejecutar este caso de
estudio, ambas propuestas se realizaron ejecutando el
algoritmo de “Búsqueda Aleatoria”.

Tabla 1
Resultados de ejecuciones

Cant.
variab. Escenarios Combinaciones

máximas

Metaheurísticas y
técnicas de Ing. de

Software
Metaheurísticas

2 9 81 9 5 (55 %)
3 27 27 27 7 (25,9 %)
2 12 27 12 6 (50 %)
4 108 504 108 16 (14,8 %)
2 9 28 9 5 (55 %)
3 27 112 27 7 (25,9 %)

Como se puede observar al utilizar metaheurísticas y
la técnica de Ingeniería de Software se genera al menos
una combinación de valores para probar cada uno de los
escenarios, por tanto se cubre el 100 % de los escenarios
con una cantidad de combinaciones similar a las obtenidas
en el otro algoritmo. En contraste las propuestas de
optimización que solo utilizan metaheurísticas generan
como promedio el 37,7 % de los escenarios. Es necesario
aclarar que en el experimento se emplearon combinaciones
de variables que incluyen datos del tipo fecha, numérico,
cadena, lógico y enumerado.

CONCLUSIONES
En este trabajo se definieron las clases de equivalencia

que permiten cubrir las pruebas para diferentes tipos de
atributos, y las técnicas de diseño de pruebas funcionales
que permiten lograr una mayor detección de errores según
la bibliografía consultada.

Se diseñaron casos de estudio para mostrar los
diferentes usos del componente, lo que facilita su
aplicación a diferentes contextos de diseño de los casos
de pruebas.

Se presentan los resultados de un experimento que
demuestra las ventajas que puede ofrecer el componente
desarrollado en cuanto a la maximización de escenarios
cubiertos con las combinaciones de valores de prueba
generados.

REFERENCIAS
1. MYERS, Glenford J.; SANDLER, Corey; BADGETT,

Tom. The art of software testing, John Wiley & Sons,
2011.

2. LAMANCHA PÉREZ, Beatriz; POLO, Macario,
“Generación automática de casos de prueba para
líneas de producto de software”. Innovación, Calidad e
Ingeniería del Software. 2009, núm. 5, pp. 17.

3. MEMON, Atif M.; POLLACK, Martha E.; SOFFA,
Mary Lou, “Hierarchical GUI test case generation using
automated planning”. Software Engineering, IEEE
Transactions on. 2001, núm. 27, pp. 144-155.

4. BOUQUET, Fabrice; GRANDPIERRE, Christophe
et. al. “A test generation solution to automate software
testing”, Proceedings of the 3rd international workshop
on Automation of software test, ACM, 2008, pp. 45-48.

5. ANAND, Saswat; BURKE, Edmund K. et. al. “An
orchestrated survey of methodologies for automated
software test case generation”, Journal of Systems and
Software. 2013, núm. 86, pp. 1978-2001.

6. HARMAN, Mark; MANSOURI, S. Afshin; ZHANG,
Yuanyuan. “Search-based software engineering:
Trends, techniques and applications”, ACM Computing
Surveys (CSUR). 2012, núm. 45, pp. 11.

7. SCHWARZL, Christian; PEISCHL, Bernhard.
“Generation of executable test cases based on
behavioral UML system models”, Proceedings of the 5th
Workshop on Automation of Software Test, ACM.2010,
pp. 31-34.

8. POLO USAOLA, Macario; REALES MATEO, Pedro.
“Enseñanza de la mutación en pruebas de software”,
Jornadas de Enseñanza de la Informática (18es: 2012:
Ciudad Real), 2012.

9. HARMAN, Mark. “Automated test data generation using
search based software engineering”. Automation of
Software Test, AST’07. Second International Workshop
on, IEEE, 2007, p. 2.

10. IQBAL, Muhammad Zohaib; ARCURI, Andrea;
BRIAND, Lionel. “Empirical investigation of search
algorithms for environment model-based testing of real-
time embedded software”. Proceedings of the 2012

Arloys Macías Rojas - Martha Dunia Delgado Dapena - Jenny Fajardo Calderín - Danay Larrosa Uribazo

Revista Cubana de Ingeniería. Vol. VII, No. 2, mayo - agostol, 2016, pp. 48 - 54, ISSN 2223 -1781 53

International Symposium on Software Testing and
Analysis. ACM. 2012, pp. 199-209.

11. RIBEIRO BREGIEIRO, José Carlos. “Search-
based test case generation for object-oriented java
software using strongly-typed genetic programming”,
Proceedings of the 10th annual conference companion
on Genetic and evolutionary computation. ACM. 2008,
pp. 1819-1822.

12. ZHIQIANG ZHANG, Jun Yan; Yong Zhao, Jian
Zhang. “Generating combinatorial test suite using
combinatorial optimization”, The Journal of Systems
and Software, 2014.

13. TING CHEN, Xiao-song Zhang; Shi-ze Guo, Hong-
yuan Li; Yue Wu. State of the art: Dynamic symbolic
execution for automated test generation: Future
Generation Computer Systems. 2013.

14. AHMED, Bestoun S.; ZAMLI, Kamal Z. "Comparison
of metahuristic test generation strategies based on
interaction elements coverage criterion", Industrial
Electronics and Applications (ISIEA). IEEE Symposium
on. IEEE, 2011, pp. 550-554.

15. VARSHNEY, Sapna; MEHROTRA, Monica. “Search
based software test data generation for structural
testing: a perspective”, ACM SIGSOFT Software
Engineering Notes. 2013, núm. 38, pp. 1-6.

16. FERGUSON, Roger; KOREL, Bogdan. The chaining
approach for software test data generation, ACM
Transactions on Software Engineering and Methodology
(TOSEM). 1996, núm. 5, pp. 63-86.

17. MICHAEL, Christoph C.; MCGRAW, Gary; SCHATZ,
Michael A. “Generating software test data by evolution”.
Software Engineering, IEEE Transactions on. 2001,
núm. 27, pp. 1085-1110.

18. PARGAS, Roy P.; HARROLD, Mary Jean; PECK,
Robert R. “Test-data generation using genetic
algorithms”, Software Testing Verification and Reliability.
1999, núm. 9, pp. 263-282.

19. WEGENER, Joachim; BARESEL, André;
STHAMER, Harmen. “Evolutionary test environment for
automatic structural testing”, Information and Software
Technology. 2001, núm. 43, pp. 841-854.

20. PACHAURI, Ankur; SRIVASTAVA, Gursaran.
“Automated test data generation for branch testing using
genetic algorithm: An improved approach using branch
ordering, memory and elitism”. Journal of Systems and
Software. 2013, núm. 86, pp. 1191-1208.

21. DÍAZ, Eugenia; TUYA, Javier et. al. “A tabu search
algorithm for structural software testing”, Computers &
Operations Research. 2008, núm. 35, pp. 3052-3072.

22. LANZARINI, Laura Cristina; BATTAIOTTO, Pedro
Eduardo. “Dynamic generation of test cases with
metaheuristics”, Journal of Computer Science &
Technology. 2010, núm. 10.

23. SAGARNA, Ramón; MENDIBURU, Alexander et.
al. “Assisting in search heuristics selection through
multidimensional supervised classification: A case
study on software testing”. Information Sciences. 2014.

24. SAKTI, Abdelilah; GUÉHÉNEUC, Yann-Gaël;
PESANT, Gilles. “Boosting search based testing by
using constraint based testing”, Search Based Software
Engineering, Springer. 2012, pp. 213-227.

25. PRESSMAN, R. Ingeniería del software. Un enfoque
práctico. Sexta edición. McGraw-Hill, Interamericana
Editores, SA de CV México. 2005.

AUTORES
Arloys Macías Rojas
Ingeniero Informático, Departamento de Informatización,
Facultad de Ingeniería Informática, Universidad
Tecnológica de La Habana José Antonio Echeverría,
Cujae, La Habana Cuba

Martha Dunia Delgado Dapena
Ingeniera Informatica, Doctora en Ciencias Técnicas,
Profesora Titular, Facultad de Ingeniería Informática,
Universidad Tecnológica de La Habana, José Antonio
Echeverría, Cujae, La Habana, Cuba

Jenny Fajardo Calderín
Ingeniera Informática, Doctora en Ciencias Técnicas,
Profesora Asistente, Departamento de Inteligencia Artifi-
cial e Infraestructura de Sistemas Informáticos, Facultad
de Ingeniería Informática, Universidad Tecnológica de
La Habana, José Antonio Echeverría, Cujae, La Habana,
Cuba

Danay Larrosa Uribazo
Ingeniera Informática, Instructora, Departamento de
Ingeniería de Software, Facultad de Ingeniería Informática,
Universidad Tecnológica de La Habana josé Antonio
Echeverría, Cujae, La Habana, Cuba

Generación automática de combinaciones de valores ...

Revista Cubana de Ingeniería. Vol. VII, No. 2, mayo - agosto, 2016, pp. 48 - 54, ISSN 2223 -178154

Automatic Generation of combination of Values for
Functional Testing Using Metaheuristics

Abstract
Several authors agree with the importance of the tests like element of quality control of the software and
in the impossibility of their realization of exhaustive way. This opinion defends that, the necessary quan-
tity of stages and test values to achieve the maximum coverage is too big, what converts the test-case
design, and in particular the generation of its values, in a combinatorial problem. That´s why, in many
instances, in front of the impossibility of covering all the stages, testers leave out of the design some inter-
esting values, which can discover inconsistencies with the specified requirements.This work presents a
proposal for the automatic generation of values of functional test cases, by means of the use of meta-heu-
ristic algorithms and maximizing the coverage of the stages. Furthermore, the algorithms implemented
for the generation of initial values and for the generation of combinations are detailed. Additionally a set
of good practices to use the component and the comparison of the obtained results with other existing
solutions are described.

Key words: test cases design, test values generation, software test, functional test

