2w d Vol. VII, No. 2, mayo - agosto, 2016, pp. 48 - 54

Ingenieria Informatica

Generacion automatica de
combinaciones de valores para pruebas
funcionales utilizando metaheuristicas

Arloys Macias Rojas
correo electrénico: amacias@ceis.cujae.edu.cu

Articulo Original

Universidad Tecnoldgica de La Habana José Antonio Echeverria, Cujae, La Habana, Cuba

Martha Dunia Delgado Dapena
correo electrénico: marta@ceis.cujae.edu.cu

Universidad Tecnoldgica de La Habana José Antonio Echeverria, Cujae, La Habana, Cuba

Jenny Fajardo Calderin
correo electrénico: jfajardo@ceis.cujae.edu.cu

Universidad Tecnolégica de La Habana José Antonio Echeverria, Cujae, La Habana, Cuba

Danay Larrosa Uribazo
correo electrénico: dlarrosau@ceis.cujae.edu.cu

Universidad Tecnoldgica de La Habana José Antonio Echeverria, Cujae, La Habana, Cuba

Resumen

funcionales

Recibido: 24 de marzo del 2016

INTRODUCCION

Segun [1] las pruebas son muy costosas por lo que
se dejan para las ultimas etapas del proyecto y no se
realizan con la calidad necesaria. No obstante, existen
multiples propuestas que se centran en la planificacion
y calculo de los medios indispensables para realizarlas
[2,3], asi como a la generacion automatica de escenarios
[4] y valores de prueba [5]. Estas propuestas persiguen el
objetivo fundamental de disminuir los tiempos asociados
a este proceso; simplificar su ejecucion por parte de
desarrolladores y probadores y alcanzar amplios grados

Aprobado: 14 de julio del 2015

Diversos autores coinciden en la importancia de las pruebas como elemento de control de calidad del
software y en la imposibilidad de la realizaciéon de pruebas exhaustivas. Este criterio esta sustentado en
que la cantidad de escenarios y valores de prueba necesarios para lograr cobertura total es grande, lo
que convierte el disefio de casos de prueba y en particular la generacion de sus valores en un problema
combinatorio. Este trabajo presenta una propuesta para la generacion automatica de valores de casos
de prueba funcionales, mediante el uso de algoritmos metaheuristicos, maximizando la cobertura de los
escenarios. Ademas, se detallan los algoritmos implementados para la generacion de valores iniciales y
para la generacion de combinaciones. Adicionalmente se describen un conjunto de buenas practicas para
utilizar el componente y la comparacion de los resultados obtenidos con otras soluciones existentes.

Palabras claves: disefio de casos de pruebas, generacion de valores de prueba, pruebas de software, pruebas

de cobertura disminuyendo el tiempo empleado para su
realizacion.

La generacion automatica de escenarios y valores de
prueba es un problema combinatorio, donde intervienen un
gran numero de variables, por lo que dificulta su solucion
si se aplican técnicas tradicionales, o si la cantidad de
combinaciones es tan grande e inmanejable que no se
puede decidir cuales seleccionar. En [6-8] se exploran
algunas de las respuestas que brindan las tematicas de
la Ingenieria de Software Basada en Busquedas para dar
solucion a problemas combinatorios utilizando métodos
de optimizacion [5,9]. Ademas, existen trabajos recientes

Revista Cubana de Ingenieria. Vol. VII, No. 2, mayo - agosto, 2016, pp. 48 - 54, ISSN 2223 -1781

Arloys Macias Rojas - Martha Dunia Delgado Dapena - Jenny Fajardo Calderin - Danay Larrosa Uribazo

que automatizan la realizacién de las pruebas de software
con respecto a la generacion de escenarios y valores
de prueba, utilizando técnicas para evadir la explosion
combinatoria [6,10-13] .

En [11,14] se describe el empleo de algoritmos de
basqueda para la generacion de casos de prueba para
programas orientados a objetos desarrollados en Java,
estas propuestas se centran en la generacién de caminos
independientes, no asi de los valores. En [15] se hace
un recorrido por las diversas técnicas de busqueda que
se han aplicado para la generaciéon de datos de prueba
estructural [16-20]. En [21] proponen un modelo puro
basado en el algoritmo Busqueda Tabu para la generacion
automatica de valores para casos de prueba. Mientras que
en [22] se presenta un algoritmo memético que consiste
en la fusién de una metaheuristica poblacional con una
lista Tabu, para gestionar el problema de la generacién de
caminos para casos de prueba. En [9,11,23], se propone
la generacion de casos de pruebas a través del empleo
de heuristicas y de técnicas de ingenieria de software
basadas en la busqueda. Estas alternativas se centran
en el desarrollo de valores para alcanzar un nivel de
cobertura particular de los ambientes [24].

Los aportes fundamentales de las propuestas antes
mencionadas estan dirigidos a la utilizacion de algoritmos
metaheuristicos y diversas modificaciones a estos
algoritmos, pero no tienen en cuenta la naturaleza propia
de los métodos de disefio de casos de prueba [25]. Los
métodos que provienen de la disciplina de Ingenieria de
Software se utilizan de forma empirica, pero no han sido
incorporados a estas propuestas, lo que hace que el rango
de valores que se utilizan como punto de partida para la
generacion de valores de prueba siga siendo grande, y
por tanto el problema combinatorio continta sin reducirse
significativamente. Estos métodos de disefio tradicionales
constituyen base conceptual del disefio de los casos
de prueba en la Ingenieria de Software y debieran
incorporarse a estas nuevas soluciones con el objetivo de
reducir las combinaciones de valores a generar logrando
cubrimientos similares de los escenarios de prueba.

Las propuestas existentes en generacion de valores,
no utilizan el hecho de que varias combinaciones de
valores pueden abarcar el mismo escenario representado
y por tanto este elemento podria reducir el numero de
combinaciones de valores, de forma tal, que se maximice
la cantidad de escenarios cubiertos.

En este trabajo se presenta una propuesta para la
generacion de valores de pruebas funcionales, que genera
valores iniciales significativos a partir de la descripcién
de dominio de cada variable y con ellos obtiene las
combinaciones de valores que garantizan determinados
niveles de cobertura de los escenarios para los casos de
pruebas funcionales.

MATERIALES Y METODOS

La propuesta de generador de combinaciones de
valores para casos de pruebas funcionales contempla
un componente de generacion y combinacién de valores
de pruebas y su integracién con otros componentes de
gestion automatica de casos de pruebas, conformando el
CP con la informacién necesaria.

En la figura 1 se muestra el diagrama de actividades que
describe cémo se lleva a cabo el proceso de generacion
y combinacion de valores. El proceso comienza cuando
el cliente, que puede ser un analista, programador,
disefiador de pruebas u otro sistema, define el(los)
dominio(s) del(los) atributo(s) que quiere generar. Una
vez definidos los dominios, inicia la actividad “Generar
valores iniciales para cada atributo”, de esta actividad
se despliega una condicional que le permite al usuario
escoger entre dos acciones. Si el usuario desea generar
las combinaciones, el proceso se encamina hacia la otra
actividad principal del componente llamada “Combinar
valores de cada atributo”, esta actividad devuelve la lista
de combinaciones de valores que el usuario almacenara
posteriormente. Si el usuario no decide generar las
combinaciones, el componente solo devuelve los atributos
con sus valores y respectivos estados, para que el usuario
pueda almacenarlo para uso posterior.

Para generar los valores iniciales o valores significativos,
a partir de los cuales se generan posteriormente las
combinaciones, se hace necesario que el usuario defina
los dominios de cada atributo y con esta informacion y
haciendo uso de la técnica de disefio, particion equivalente
se obtienen los valores significativos para cada variable
que se suministra al proceso de combinacién de valores.
A continuacion se exponen los criterios considerados en
la generacién de valores significativos y los algoritmos
utilizados.

Se define un algoritmo para la generacion de valores
iniciales de prueba para cada tipo de atributo. Este
algoritmo tiene como base para la generacion, la
produccion de valores que lleven a encontrar la mayor
cantidad de no conformidades en la prueba de software.

Para asentar esta base, se hace uso de diferentes
criterios en cada tipo de dato, y a partir de estos criterios
se decide a qué clases de equivalencia pertenece cada
valor. Se definieron seis valores significativos para el
dominio numerico, hhgdfgdfhgdf

El componente desarrollado emplea para la obtencién
de los valores necesarios para un CP dos algoritmos que
por su importancia en el proceso de generacion seran
descritos con detalle a continuacion:

El Algoritmo 1, es el encargado de generar los valores
iniciales para cada atributo, teniendo como entrada la
representacion de su dominio, para ello se consideran los
criterios descritos. Este algoritmo discretiza los dominios,
de forma tal que los valores con los que comienza el
algoritmo de generacién de combinaciones (Agoritmo 2),
reciba como entrada valores significativos para el proceso

Revista Cubana de Ingenieria. Vol. VII, No. 2, mayo - agostol, 2016, pp. 48 - 54, ISSN 2223 -1781

de prueba, y no todos los valores del dominio.

Generaciéon automatica de combinaciones de valores ...

(‘activity DiagramaDeA ctividad [@DiagramaDeAdi\ridad]J

Disefiador de pruebas

Generador de valores de casos de pruebas (GeVaF)

Definir dominio |
. > de atributos |

= Generar valores iniciales

Dominio de atributos
[Descritos]

Valores
_ | [Generados]

para cada atributo
T

Generar
~~.__ combinacién

P

|'.Recihir valores | Recibir |,e — 5
. combinaciones
T - >

| |

W o

Valores

[GeneradosRecibidos] ‘ ‘ [Combinados/Recibidos

‘ Valores

P E— P

| Almacenar 1 | Almacenar

| valores | | combinaciones |
b W

[Generados/Almacenados]

Valores
[Combinados/Almacenados]

‘ Valores

| no
| si
|

L (Combinar valores |
| de cada atributo |

Valores
[Combinados]

Fig. 1. Diagrama de actividades del componente de generacion de valores de casos de prueba.

Algoritmo 1. Generacién de valores de prueba para
un atributo

Sea a=(X,X.,...X,) el vector que contiene las
variables o atributos de entrada a la funcionalidad que se
desea probar.

Entrada: B =(y..v..--.¥,) el vector que contiene la
descripcidn del dominio de cada atributo perteneciente a
; .

Salida: o« =(4.4......4) (vector que contiene los
valores iniciales para la generacion de combinaciones).
1. Obtener vector ¢=(e,e,....e,)que contiene criterios
para instanciar valores de casos de prueba para el tipo
de dato y, .
2.v=1
3. Paracada €,, con 1<v<k

i)Obtener el valor v , aplicando la trasformacién
T. (e,.y,) correspondiente a ¢, para el atributo =, .

ii)Obtener el valor £, que corresponde a la clase de
equivalencia de v,

iii)Obtener el valor Z, que corresponde a la

pertenencia de ¥; al dominio definido para el atributo.
iv)Construir la triada ordenada », = (v,.E,.z,)

v)Adicionar A, a o;
vi)Incrementar v

El Algoritmo 2, es el encargado de generar todas
las combinaciones de valores de prueba para probar

una funcionalidad, teniendo en cuenta los valores de
cobertura especificados.
Algoritmo 2. Generacion de combinaciones de
valores para un requisito funcional
Entrada: «=(X,,X...X,) (vector que contiene los
atributos de los cuales se quieren combinar sus valores).
o= (E,&,...,EH (vector que contiene 7 vectores con los
valores iniciales de cada atributo ge la funcionalidad
que se quiere probar, donde el vector ¢; tiene la forma
o1 = (Myhz20) donde la longitud m del vector o, puede
ser diferente para cadagdel vector) 4

Salida: M, (matriz que contiene las combinaciones de
valores generados). .
1) Para cada atributo de a=(X, X,.., X,):
i)Si no esta generado.
a)Generar el vector o:=(1,,4,,....,4,) con los
valores iniciales del atributo utilizando el Algoritmo 1.
b) Adicionar o =(4,4,.....4,) al vector ¢ = (gl,gz,___,gn)
en la posicion |.
ii) incrementar /.
2.Calcular cantidad total de iteraciones / a partir de la
cobertura C.
3.Calcular cantidad maxima de combinaciones de
clases de equivalencia ([‘ongirud(s:)) segln se
indica en el modelo de optimizacion.
4. j=1
5. Para cada iteracion j </

Revista Cubana de Ingenieria. Vol. VII, No. 2, mayo - agosto, 2016, pp. 48 - 54, ISSN 2223 -1781

Arloys Macias Rojas - Martha Dunia Delgado Dapena - Jenny Fajardo Calderin - Danay Larrosa Uribazo

iYGenerar una combinacion de valores v, = (¢, ®,,-.-,®,)
en la que cada elemento ¢, es un par ordenado
o, =(V,.E,)donde y, es el valor generado para el
atributo £y E, es el valor de la clase de equivalencia

correspondiente.

ii)Validar la combinacion 7, = (#1::.-9,) .
, aplicando los

mecanismos de penalizacia segun el modelo propuesto.
iii)Si la combinaciéon », es valida

a)Calcularheuristica (v,) segunla ecuacion presentada.

b)Si (¥,) = umbrai(y,) entonces adicionara M,

c)Si j> (I, longitud(=:)) recalcular el umbral con la
expresion presentada.
iv)Incrementar ;

El componente GeVaF, que implementa esta propuesta
ofrece una solucién que resuelve la situacion problematica
de tres formas distintas y de facil empleo para el usuario
que la utilice.

La primera variante es utilizando este componente
en otra aplicacién que capture los dominios de cada
atributo a través de una interfaz de usuario con el objetivo
de evitarles a los futuros interesados la obligacién de
consumir un servicio. De esta forma se podra obtener
las combinaciones de valores para casos de pruebas
funcionales ocultando tras la interfaz todo el procesamiento
de ficheros y variables correspondientes.

La segunda variante es utilizar el componente haciendo
uso de su capa de servicios para el consumo de los
usuarios con el principal objetivo de facilitar la integracion
con cualquier tipo de aplicacion que esta ofrece, ya sea
desktop o web.

Se decidié ademas darle soluciéon a este problema
usando una variante de componente que permita tratarlo
como una biblioteca, para darle al usuario una forma de
solucién arquitectdnica distinta y poder ajustar la solucién
a cualquier necesidad.

Los resultados de las combinaciones generadas se
almacenan en un fichero XML. En la figura 2 se muestra
un ejemplo de una combinacion de los atributos “Usuario”
y “Contrasefia”:

RESULTADOS Y DSICUSION

Para validar el componente de generacion de valores
de prueba GeVaF se realizaron varias ejecuciones con el
objetivo de comparar los resultados con otras propuestas
nacionales.

Se disefié un experimento en el que se fija el nUmero de
iteraciones (/) a partir del 100 % de cobertura (C) de los
valoresiniciales X, . Para ejecutar el experimento se utilizé
como caso de estudio una aplicacion real, con el objetivo
de verificar si se reduce la cantidad de combinaciones de
valores para casos de pruebas funcionales generadas
por GeVaF evidenciando que se cubra el 100 % de los
escenarios, con respecto a las combinaciones generadas
por el componente que solo utiliza metaheuristicas. En
este caso de estudio se disefiaron las pruebas para seis
de sus funcionalidades que, como promedio tienen tres
atributos por cada una de ellas.

="xs:string">@</Valor>
<estado>true</estado>

<ClaseDeEgquivalencia zmlns:xsi="http://www.w3.org/2001/XML5chema-instance" xmlns:xs="

</item>
<item>

<Nombre>Gontrasefia</Nombre>

http://www.w3.org/2001/XMLSchema" xsi:type="xs:ipt">13</ClaseDeEquivalencia>

<Valor xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance" xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xsi:type

="xg:string">23 </Valor>
<estado>true</estado>

<ClaseDeEquivalencia xmlns:xsi="http://vwww.w3.o0rg/2001/XML.5chema-instance" xmlns:xs="

</item>
</listaCombinaciones>
<listaCombinaciones>
<item>
<Nombre>Usuario</Nombre>

http://www.w3.org/2001/XMLSchema"” xsi:type="%g:int">23</ClaseDeEquivalencia>

<Valor xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:xs="http://www.w3.org/2001/¥MLSchema" xsi:type

="5§:string"4</Valor>
<estado>false</estado>

</item>
<item>

<Nombre>Gontrasefia</Nombre>

<ClaseDeEquivalencia zmlns:xsi="http://www.w3.o0rg/2001/XML.5chema-instance” xmlns:xs="
http://www.w3.0rg/2001/XMLSchema" xsi:type="xg:ipE">12</ClaseDeEquivalencia>

<Valor zmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"” xmlns:xs="http://www.w3.o0rg/2001/XMLSchema" xsi:type

="xsg:string">8</Valor>
<estado>true</estado>

Fig. 2. Resultado de una combinacién de valores generada con GeVaF.

Revista Cubana de Ingenieria. Vol. VII, No. 2, mayo - agostol, 2016, pp. 48 - 54, ISSN 2223 -1781

Generacion automatica de combinaciones de valores ...

En la tabla 1 se muestra la informacion referente a los
casos de estudio, sefialando para cada uno la cantidad
de variables, la cantidad de escenarios y la cantidad
maxima de combinaciones necesarias para cubrir los
escenarios correspondientes a cada funcionalidad a
probar, asi como los resultados obtenidos con la ejecucion
de la herramienta GeVaF, que utiliza metaheuristicas y la
técnica de particion equivalente de la disciplina Ingenieria
de Software y su comparacién con un componente que
solo utiliza metaheuristicas. Para ejecutar este caso de
estudio, ambas propuestas se realizaron ejecutando el
algoritmo de “Busqueda Aleatoria”.

REFERENCIAS

1. MYERS, Glenford J.; SANDLER, Corey; BADGETT,
Tom. The art of software testing, John Wiley & Sons,
2011.

2. LAMANCHA PEREZ, Beatriz; POLO, Macario,
“Generacion automatica de casos de prueba para
lineas de producto de software”. Innovacion, Calidad e
Ingenieria del Software. 2009, nim. 5, pp. 17.

3. MEMON, Atif M.; POLLACK, Martha E.; SOFFA,
Mary Lou, “Hierarchical GUI test case generation using
automated planning”. Software Engineering, |EEE
Transactions on. 2001, nim. 27, pp. 144-155.

Tabla 1
Resultados de ejecuciones
Cant Combinaciones Metaheuristicas y

L Escenarios " técnicas de Ing. de | Metaheuristicas

variab. maximas

Software

2 9 81 9 5 (55 %)
3 27 27 27 7 (25,9 %)
2 12 27 12 6 (50 %)
4 108 504 108 16 (14,8 %)
2 9 28 9 5 (55 %)
3 27 112 27 7 (25,9 %)

Como se puede observar al utilizar metaheuristicas y
la técnica de Ingenieria de Software se genera al menos
una combinacién de valores para probar cada uno de los
escenarios, por tanto se cubre el 100 % de los escenarios
con una cantidad de combinaciones similar a las obtenidas
en el otro algoritmo. En contraste las propuestas de
optimizacion que solo utilizan metaheuristicas generan
como promedio el 37,7 % de los escenarios. Es necesario
aclarar que en el experimento se emplearon combinaciones
de variables que incluyen datos del tipo fecha, numérico,
cadena, l6gico y enumerado.

CONCLUSIONES

En este trabajo se definieron las clases de equivalencia
que permiten cubrir las pruebas para diferentes tipos de
atributos, y las técnicas de disefio de pruebas funcionales
que permiten lograr una mayor deteccion de errores segun
la bibliografia consultada.

Se disenaron casos de estudio para mostrar los
diferentes usos del componente, lo que facilita su
aplicacion a diferentes contextos de disefio de los casos
de pruebas.

Se presentan los resultados de un experimento que
demuestra las ventajas que puede ofrecer el componente
desarrollado en cuanto a la maximizacion de escenarios
cubiertos con las combinaciones de valores de prueba
generados.

4. BOUQUET, Fabrice; GRANDPIERRE, Christophe
et. al. “A test generation solution to automate software
testing”, Proceedings of the 3rd international workshop
on Automation of software test, ACM, 2008, pp. 45-48.

5. ANAND, Saswat; BURKE, Edmund K. et. al. “An
orchestrated survey of methodologies for automated
software test case generation”, Journal of Systems and
Software. 2013, num. 86, pp. 1978-2001.

6. HARMAN, Mark; MANSOURI, S. Afshin; ZHANG,
Yuanyuan. “Search-based software engineering:
Trends, techniques and applications”, ACM Computing
Surveys (CSUR). 2012, num. 45, pp. 11.

7. SCHWARZL, Christian; PEISCHL, Bernhard.
“Generation of executable test cases based on
behavioral UML system models”, Proceedings of the 5th
Workshop on Automation of Software Test, ACM.2010,
pp. 31-34.

8. POLO USAOLA, Macario; REALES MATEO, Pedro.
“Ensefianza de la mutacién en pruebas de software”,
Jornadas de Ensefianza de la Informatica (18es: 2012:
Ciudad Real), 2012.

9. HARMAN, Mark. “Automated test data generation using
search based software engineering”. Automation of
Software Test, AST’07. Second International Workshop
on, IEEE, 2007, p. 2.

10. IQBAL, Muhammad Zohaib; ARCURI, Andrea;
BRIAND, Lionel. “Empirical investigation of search
algorithms for environment model-based testing of real-
time embedded software”. Proceedings of the 2012

Revista Cubana de Ingenieria. Vol. VII, No. 2, mayo - agosto, 2016, pp. 48 - 54, ISSN 2223 -1781

Arloys Macias Rojas - Martha Dunia Delgado Dapena - Jenny Fajardo Calderin - Danay Larrosa Uribazo

International Symposium on Software Testing and
Analysis. ACM. 2012, pp. 199-209.

11. RIBEIRO BREGIEIRO, José Carlos. “Search-
based test case generation for object-oriented java
software using strongly-typed genetic programming”,
Proceedings of the 10th annual conference companion
on Genetic and evolutionary computation. ACM. 2008,
pp. 1819-1822.

12. ZHIQIANG ZHANG, Jun Yan; Yong Zhao, Jian
Zhang. “Generating combinatorial test suite using
combinatorial optimization”, The Journal of Systems
and Software, 2014.

13. TING CHEN, Xiao-song Zhang; Shi-ze Guo, Hong-
yuan Li; Yue Wu. State of the art: Dynamic symbolic
execution for automated test generation: Future
Generation Computer Systems. 2013.

14. AHMED, Bestoun S.; ZAMLI, Kamal Z. "Comparison
of metahuristic test generation strategies based on
interaction elements coverage criterion", Industrial
Electronics and Applications (ISIEA). IEEE Symposium
on. IEEE, 2011, pp. 550-554.

15. VARSHNEY, Sapna; MEHROTRA, Monica. “Search
based software test data generation for structural
testing: a perspective”, ACM SIGSOFT Software
Engineering Notes. 2013, num. 38, pp. 1-6.

16. FERGUSON, Roger; KOREL, Bogdan. The chaining
approach for software test data generation, ACM
Transactions on Software Engineering and Methodology
(TOSEM). 1996, num. 5, pp. 63-86.

17. MICHAEL, Christoph C.; MCGRAW, Gary; SCHATZ,
Michael A. “Generating software test data by evolution”.
Software Engineering, |EEE Transactions on. 2001,
nam. 27, pp. 1085-1110.

18. PARGAS, Roy P.; HARROLD, Mary Jean; PECK,
Robert R. “Test-data generation using genetic
algorithms”, Software Testing Verification and Reliability.
1999, num. 9, pp. 263-282.

19. WEGENER, Joachim; BARESEL, André;
STHAMER, Harmen. “Evolutionary test environment for
automatic structural testing”, Information and Software
Technology. 2001, num. 43, pp. 841-854.

20. PACHAURI, Ankur; SRIVASTAVA, Gursaran.
“Automated test data generation for branch testing using
genetic algorithm: An improved approach using branch
ordering, memory and elitism”. Journal of Systems and
Software. 2013, num. 86, pp. 1191-1208.

21. DIAZ, Eugenia; TUYA, Javier et. al. “A tabu search
algorithm for structural software testing”, Computers &
Operations Research. 2008, num. 35, pp. 3052-3072.

22. LANZARINI, Laura Cristina; BATTAIOTTO, Pedro
Eduardo. “Dynamic generation of test cases with
metaheuristics”, Journal of Computer Science &
Technology. 2010, num. 10.

23. SAGARNA, Ramoén; MENDIBURU, Alexander et.
al. “Assisting in search heuristics selection through
multidimensional supervised classification: A case
study on software testing”. Information Sciences. 2014.

24. SAKTI, Abdelilah; GUEHENEUC, Yann-Gaél;
PESANT, Gilles. “Boosting search based testing by
using constraint based testing”, Search Based Software
Engineering, Springer. 2012, pp. 213-227.

25. PRESSMAN, R. Ingenieria del software. Un enfoque
practico. Sexta edicion. McGraw-Hill, Interamericana
Editores, SA de CV México. 2005.

AUTORES

Arloys Macias Rojas

Ingeniero Informatico, Departamento de Informatizacion,
Facultad de Ingenieria Informatica, Universidad
Tecnoldogica de La Habana José Antonio Echeverria,
Cujae, La Habana Cuba

Martha Dunia Delgado Dapena

Ingeniera Informatica, Doctora en Ciencias Técnicas,
Profesora Titular, Facultad de Ingenieria Informatica,
Universidad Tecnoldgica de La Habana, José Antonio
Echeverria, Cujae, La Habana, Cuba

Jenny Fajardo Calderin

Ingeniera Informatica, Doctora en Ciencias Técnicas,
Profesora Asistente, Departamento de Inteligencia Artifi-
cial e Infraestructura de Sistemas Informaticos, Facultad
de Ingenieria Informatica, Universidad Tecnolégica de
La Habana, José Antonio Echeverria, Cujae, La Habana,
Cuba

Danay Larrosa Uribazo

Ingeniera Informatica, Instructora, Departamento de
Ingenieria de Software, Facultad de Ingenieria Informatica,
Universidad Tecnoldgica de La Habana josé Antonio
Echeverria, Cujae, La Habana, Cuba

Revista Cubana de Ingenieria. Vol. VII, No. 2, mayo - agostol, 2016, pp. 48 - 54, ISSN 2223 -1781

Generaciéon automatica de combinaciones de valores ...

Automatic Generation of combination of Values for
Functional Testing Using Metaheuristics

Abstract

Several authors agree with the importance of the tests like element of quality control of the software and
in the impossibility of their realization of exhaustive way. This opinion defends that, the necessary quan-
tity of stages and test values to achieve the maximum coverage is too big, what converts the test-case
design, and in particular the generation of its values, in a combinatorial problem. That’s why, in many
instances, in front of the impossibility of covering all the stages, testers leave out of the design some inter-
esting values, which can discover inconsistencies with the specified requirements.This work presents a
proposal for the automatic generation of values of functional test cases, by means of the use of meta-heu-
ristic algorithms and maximizing the coverage of the stages. Furthermore, the algorithms implemented
for the generation of initial values and for the generation of combinations are detailed. Additionally a set
of good practices to use the component and the comparison of the obtained results with other existing
solutions are described.

Key words: test cases design, test values generation, software test, functional test

Revista Cubana de Ingenieria. Vol. VII, No. 2, mayo - agosto, 2016, pp. 48 - 54, ISSN 2223 -1781

